dc.contributor | Gaitan, Hernando | |
dc.creator | Ramírez Ramos, Nicolás José | |
dc.date.accessioned | 2023-08-01T21:30:09Z | |
dc.date.accessioned | 2023-08-25T12:57:30Z | |
dc.date.available | 2023-08-01T21:30:09Z | |
dc.date.available | 2023-08-25T12:57:30Z | |
dc.date.created | 2023-08-01T21:30:09Z | |
dc.date.issued | 2023 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/84407 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8426909 | |
dc.description.abstract | Este trabajo aborda el estudio de los Q-retículos distributivos, generalizaciones de las álgebras Booleanas monádicas. Mediante resultados de dualidad basados en el trabajo de Stone, Priestley y Halmos se muestra que las subvariedades de los Q-retículos distributivos forman una ω + 1 cadena, donde cada subvariedad es generada por una única álgebra finita. El objetivo es encontrar nuevas ecuaciones que caractericen estas subvariedades, explorando la dualidad en el caso finito y analizando la estructura de sus álgebras generadoras. (Texto tomado de la fuente) | |
dc.description.abstract | This work addresses the study of Q-distributive lattices, which are generalizations of monadic Boolean algebras. Through duality results based on the work of Stone, Priestley, and Halmos, it is shown that the subvarieties of Q-distributive lattices form an ω + 1 chain, where each subvariety is generated by a unique finite algebra. The objective is to find new equations that characterize these subvarieties, exploring duality in the finite case and analyzing the structure of their generating algebras. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | L.M. Acosta, Temas de Teoría de Retículos, Universidad Nacional de Colombia (2016). | |
dc.relation | M.E. Adams and W. Dziobiak, Quasivarieties of distributive lattices with a quantifier, Discrete Math. 135 (1994) 15-28. | |
dc.relation | M.E. Adams and W. Dziobiak, Endomorphisms of distributive lattices with a quantifier, International Journal of Algebra and Computation, Vol. 17, No. 7 (2007) 1349-1376. | |
dc.relation | R. Balbes and P. Dwinger, Distributive Lattices (University of Missouri Press, Columbia, MO, 1974). | |
dc.relation | S. Burris and H.P. Sankappanavar, A course in Universal Algebra, Graduate Texts in Mathematics, Vol 78 (Springer, Berlin, 1981). | |
dc.relation | R. Cignoli, Quantifiers on distributive lattices, Discrete Math. 96 (1991) 183-197. | |
dc.relation | S. Givant, Duality Theories for Boolean Algebras with Operators, Springer Monographs in Mathematics, (Springer, Switzerland, 2014). | |
dc.relation | P.R. Halmos, Algebraic Logic (Chelsea, New York, 1962). | |
dc.relation | P.R. Halmos, Algebraic Logic, I. Monadic Boolean algebras, Compositio Math. 12 (1955) 217-249. | |
dc.relation | P.R. Halmos, Lectures on Boolean Algebras, Van Nostrand Studies 1, Princenton, New Jersey (1963). | |
dc.relation | P.T. Johnstone, Stone Spaces, Cambridge Univ. Press (1982). | |
dc.relation | B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967). | |
dc.relation | B. Jónsson and Alfred Tarski, Boolean algebras with operators. Part I, American Journal of Math. Vol. 73, No. 4 (1951) 891-939. | |
dc.relation | S. Mac lane, Categories for the Working Mathematician, 2nd ed, Graduate Texts in Mathematics, Vol 5, Springer, (1998). | |
dc.relation | A. Malcev, On the general theory of algebraic systems, Mat. Sb. (77) 35 (1954) 3-20. | |
dc.relation | G. Markowsky, Some combinatorial aspects of lattice theory, Lattice Theory Conf. Houston (1973). | |
dc.relation | D. Monk, On equational classes of algebraic versions of logic I, Math. Scand. 27 (1970) 53-71. | |
dc.relation | L. Monteiro, Alg`ebres de Boole monadiques libres, Algebra Universalis 8 (1978) 374-380. | |
dc.relation | J.M. Munkres, Topology a first course, Prentice-Hall, Inc., New Jersey (1975). | |
dc.relation | A. Petrovich, Equations in the theory of Q-distributive lattices, Discrete Math. 175 (1997) 211-219. | |
dc.relation | H.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970) 186-190. | |
dc.relation | H.A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 4 (3) (1972) 507-530. | |
dc.relation | M.H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40, (1936) 37-111. | |
dc.relation | M.H. Stone, Topological representation of distributive lattices and Brouwerian logics, Casopis. Pest. Math. 67 (1937) 1-25. | |
dc.relation | O. Varsavsky, Quantifiers and equivalence relations, Revista matemática cuyana, Vol. 2 no. 1 (1956) 29–51. | |
dc.relation | D. van der Zypen, Aspects of Priestley Duality, Phd Thesis, Mathematisches Institut der Universität Bern (2004). | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Ecuaciones para retículos distributivos con cuantificador | |
dc.type | Trabajo de grado - Maestría | |