dc.contributorGaitan, Hernando
dc.creatorRamírez Ramos, Nicolás José
dc.date.accessioned2023-08-01T21:30:09Z
dc.date.accessioned2023-08-25T12:57:30Z
dc.date.available2023-08-01T21:30:09Z
dc.date.available2023-08-25T12:57:30Z
dc.date.created2023-08-01T21:30:09Z
dc.date.issued2023
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/84407
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8426909
dc.description.abstractEste trabajo aborda el estudio de los Q-retículos distributivos, generalizaciones de las álgebras Booleanas monádicas. Mediante resultados de dualidad basados en el trabajo de Stone, Priestley y Halmos se muestra que las subvariedades de los Q-retículos distributivos forman una ω + 1 cadena, donde cada subvariedad es generada por una única álgebra finita. El objetivo es encontrar nuevas ecuaciones que caractericen estas subvariedades, explorando la dualidad en el caso finito y analizando la estructura de sus álgebras generadoras. (Texto tomado de la fuente)
dc.description.abstractThis work addresses the study of Q-distributive lattices, which are generalizations of monadic Boolean algebras. Through duality results based on the work of Stone, Priestley, and Halmos, it is shown that the subvarieties of Q-distributive lattices form an ω + 1 chain, where each subvariety is generated by a unique finite algebra. The objective is to find new equations that characterize these subvarieties, exploring duality in the finite case and analyzing the structure of their generating algebras.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationL.M. Acosta, Temas de Teoría de Retículos, Universidad Nacional de Colombia (2016).
dc.relationM.E. Adams and W. Dziobiak, Quasivarieties of distributive lattices with a quantifier, Discrete Math. 135 (1994) 15-28.
dc.relationM.E. Adams and W. Dziobiak, Endomorphisms of distributive lattices with a quantifier, International Journal of Algebra and Computation, Vol. 17, No. 7 (2007) 1349-1376.
dc.relationR. Balbes and P. Dwinger, Distributive Lattices (University of Missouri Press, Columbia, MO, 1974).
dc.relationS. Burris and H.P. Sankappanavar, A course in Universal Algebra, Graduate Texts in Mathematics, Vol 78 (Springer, Berlin, 1981).
dc.relationR. Cignoli, Quantifiers on distributive lattices, Discrete Math. 96 (1991) 183-197.
dc.relationS. Givant, Duality Theories for Boolean Algebras with Operators, Springer Monographs in Mathematics, (Springer, Switzerland, 2014).
dc.relationP.R. Halmos, Algebraic Logic (Chelsea, New York, 1962).
dc.relationP.R. Halmos, Algebraic Logic, I. Monadic Boolean algebras, Compositio Math. 12 (1955) 217-249.
dc.relationP.R. Halmos, Lectures on Boolean Algebras, Van Nostrand Studies 1, Princenton, New Jersey (1963).
dc.relationP.T. Johnstone, Stone Spaces, Cambridge Univ. Press (1982).
dc.relationB. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967).
dc.relationB. Jónsson and Alfred Tarski, Boolean algebras with operators. Part I, American Journal of Math. Vol. 73, No. 4 (1951) 891-939.
dc.relationS. Mac lane, Categories for the Working Mathematician, 2nd ed, Graduate Texts in Mathematics, Vol 5, Springer, (1998).
dc.relationA. Malcev, On the general theory of algebraic systems, Mat. Sb. (77) 35 (1954) 3-20.
dc.relationG. Markowsky, Some combinatorial aspects of lattice theory, Lattice Theory Conf. Houston (1973).
dc.relationD. Monk, On equational classes of algebraic versions of logic I, Math. Scand. 27 (1970) 53-71.
dc.relationL. Monteiro, Alg`ebres de Boole monadiques libres, Algebra Universalis 8 (1978) 374-380.
dc.relationJ.M. Munkres, Topology a first course, Prentice-Hall, Inc., New Jersey (1975).
dc.relationA. Petrovich, Equations in the theory of Q-distributive lattices, Discrete Math. 175 (1997) 211-219.
dc.relationH.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970) 186-190.
dc.relationH.A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 4 (3) (1972) 507-530.
dc.relationM.H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40, (1936) 37-111.
dc.relationM.H. Stone, Topological representation of distributive lattices and Brouwerian logics, Casopis. Pest. Math. 67 (1937) 1-25.
dc.relationO. Varsavsky, Quantifiers and equivalence relations, Revista matemática cuyana, Vol. 2 no. 1 (1956) 29–51.
dc.relationD. van der Zypen, Aspects of Priestley Duality, Phd Thesis, Mathematisches Institut der Universität Bern (2004).
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEcuaciones para retículos distributivos con cuantificador
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución