dc.contributorGutiérrez Álvarez, Luis Felipe
dc.contributorNarváez Cuenca, Carlos Eduardo
dc.contributorGrupo de Investigación en Biomoléculas Alimentarias
dc.creatorRincón Soledad, Martha Cecilia
dc.date.accessioned2023-08-09T14:12:09Z
dc.date.accessioned2023-08-25T12:56:49Z
dc.date.available2023-08-09T14:12:09Z
dc.date.available2023-08-25T12:56:49Z
dc.date.created2023-08-09T14:12:09Z
dc.date.issued2023
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/84505
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8426908
dc.description.abstractLa explotación cacaotera genera grandes cantidades de subproductos (principalmente la cacota (CPH) (86% del peso fresco) y la cascarilla (CBS) (12% del peso seco del grano)) pues sólo aprovecha económicamente los granos, que representa aproximadamente 10% de la masa del fruto fresco. A pesar del gran volumen de subproductos generados por el procesamiento del cacao y de su riqueza en compuestos de valor agregado, en la práctica común, éstos son usados como biofertilizante en las plantaciones de cacao, o simplemente desaprovechados. En este trabajo, de planteó la obtención de compuestos fenólicos y antioxidantes mediante extracción asistida por microondas (MAE) como alternativa de valorización de estos subproductos. Para cumplir este objetivo, se evaluó el efecto de la potencia (200, 300 y 400 W) y tiempo de extracción (120, 180 y 240 s), y de la relación de solvente/sólido (L/S) (30, 50 y 70 mL/g), en el contenido de compuestos fenólicos y la capacidad antioxidante de los extractos, empleando etanol al 63% como solvente, y siguiendo un diseño experimental de tipo Box-Behnken. La composición de los compuestos fenólicos para cascarilla fue determinada por UHPLC-DAD. A los extractos de CPH y CBS obtenidos en condiciones óptimas se les evaluó su actividad citotóxica sobre líneas celulares tumorales HT-29 (adenocarcinoma colorectal), A549 (adenocarcinoma de pulmón), CAL-27 (carcinoma escamo celular de lengua) y MCF-7 (adenocarcinoma de glándula mamaria). Los resultados mostraron que para la cacota, la potencia de extracción y la relación L/S fueron los factores más influyentes en las variables de respuesta, mientras que para la cascarilla fue más influyente el tiempo de extracción. El mayor rendimiento, contenido de fenoles y capacidad antioxidante (FRAP, DPPH) para la cacota en condiciones óptimas se obtiene a 397,52 W; 233,98 s y 69,99 mL/g. En la cascarilla las condiciones óptimas se obtienen a 399,88 W; 217,42 s y 69,71 mL/g, encontrando que este último subproducto principalmente está compuesto por teobromina y cafeína. En cuanto a la evaluación in vitro sobre las líneas celulares, los extractos de los subproductos del beneficio del cacao mostraron baja selectividad y actividad citotóxica. (Texto tomado de la fuente)
dc.description.abstractCocoa farming generates large quantities of by-products (mainly cocoa pod husk (CPH) (86% of the fresh weight) and cocoa bean shell (CBS) (12% of the dry weight of the bean)), since only the seed, which represents approximately 10% of the mass of the fresh fruit, is economically exploited. Despite the large volume of by-products generated by cocoa processing and their richness in value-added compounds, in common practice, these are used as biofertilizer in cocoa plantations, or simply wasted. In this work, the obtaining of phenolic compounds and antioxidants by microwave-assisted extraction (MAE) was proposed as an alternative for the valorization of these by-products. To meet this objective, the effect of power (200, 300 and 400 W) and extraction time (120, 180 and 240 s), and of the solvent/solid (L/S) ratio (30, 50 and 70 mL/g), on the content of phenolic compounds and the antioxidant capacity of the extracts was evaluated, using 63% ethanol as solvent, and following a Box-Behnken experimental design. The composition of phenolic compounds for CBS was determined by UHPLC-DAD. CPH and CBS extracts obtained under optimal conditions were evaluated for their cytotoxic activity on HT-29 (colorectal adenocarcinoma), A549 (lung adenocarcinoma), CAL-27 (squamous cell carcinoma of the tongue) and MCF-7 (mammary gland adenocarcinoma) tumor cell lines. The results showed that for coca pod husk, extraction power and L/S ratio were the most influential factors on the response variables, while for cascarilla, extraction time was more influential. The highest yield, phenol content and antioxidant capacity (FRAP, DPPH) for CPH under optimum conditions are obtained at 397.52 W; 233.98 s and 69.99 mL/g. In the cocoa bean shell the optimal conditions are obtained at 399.88 W; 217.42 s and 69.71 mL/g, finding that this last by-product is mainly composed of theobromine and caffeine. As for the in vitro evaluation on cell lines, the extracts of cocoa processing by-products showed low selectivity and cytotoxic activity.
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAdebo, O. A., & Medina-Meza, I. G. (2020). Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. In Molecules (Vol. 25, Issue 4). https://doi.org/10.3390/molecules25040927
dc.relationAfoakwa O.E., Quao J., Takrama J., Budu A. & Saalia F. (2011). Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. Journal of Food and Science Technology 50(6):1097-1105.
dc.relationAgudelo, C., Bravo, K., Ramírez-Atehortúa, A., Torres, D., Osorio, E., & Carrillo-Hormaza, L. (2021). Chemical and skincare property characterization of the main cocoa byproducts: Extraction optimization by rsm approach for development of sustainable ingredients. Molecules, 26(24). https://doi.org/10.3390/molecules26247429
dc.relationAlonso-Salces, R. M., Korta, E., Barranco, A., Berrueta, L. A., Gallo, B., & Vicente, F. (2001). Pressurized liquid extraction for the determination of polyphenols in apple. Journal of Chromatography A, 933(1–2). https://doi.org/10.1016/S0021-9673(01)01212-2
dc.relationArcos Campues, M.L. (2022). Biosorción de iones Cd (II) en solución acuosa por biocarbón obtenido a partir de cáscara de Theobroma cacao. [Trabajo de titulación modalidad Proyecto de Investigación previo a la obtención del título de Ingeniero Ambiental]. UCE.
dc.relationAtjanasuppat, K., Wongkham, W., Meepowpan, P., Kittakoop, P., Sobhon, P., Bartlett, A., & Whitfield, P. J. (2009). In vitro screening for anthelmintic and antitumour activity of ethnomedicinal plants from Thailand. Journal of Ethnopharmacology, 123(3). https://doi.org/10.1016/j.jep.2009.03.010
dc.relationBaharum, Z., Akim, A. M., Taufiq-Yap, Y. H., Hamid, R. A., & Kasran, R. (2014). In vitro antioxidant and antiproliferative activities of methanolic plant part extracts of Theobroma cacao. Molecules, 19(11). https://doi.org/10.3390/molecules191118317
dc.relationBarbosa-Pereira, L., Belviso, S., Ferrocino, I., Rojo-Poveda, O., & Zeppa, G. (2021). Characterization and classification of cocoa bean shells from different regions of venezuela using hplc-pda-ms/ms and spectrophotometric techniques coupled to chemometric analysis. Foods, 10(8). https://doi.org/10.3390/foods10081791
dc.relationBarbosa-Pereira, L., Guglielmetti, A., & Zeppa, G. (2018). Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food and Bioprocess Technology, 11(4), 818–835. https://doi.org/10.1007/s11947-017-2045-6
dc.relationBeckett, S. T. (2008). Science of Chocolate. Cambridge-Reino Unido: The Royal Society of Chemestry.
dc.relationBeckett, Stephen T. (2009). Industrial Chocolate Manufacture and Use: Fourth Edition. In Industrial Chocolate Manufacture and Use: Fourth Edition (4th ed.). https://doi.org/10.1002/9781444301588.
dc.relationBermúdez-Menéndez, J.M. (2017). Extracción assistida com microondas. En Menéndez, J.A., Moreno, A.H. (Eds.). (2017). Aplicaciones industriales del calentamiento con energía microondas. Latacunga, Ecuador: Editorial Universidad Técnica de Cotopaxi, Primera Edición, pp 315. ISBN: 978-9978- 395-34-9
dc.relationBernal Cedillo, T. M. (2021). Revalorización de residuos de la Industria de Chocolate para la obtención de biomoléculas de interés industrial a partir de la cascarilla de cacao. 14-15.
dc.relationBotella-Martínez, C., Lucas-Gonzalez, R., Ballester-Costa, C., Pérez-álvarez, J. Á., Fernández-López, J., Delgado-Ospina, J., Chaves-López, C., & Viuda-Martos, M. (2021). Ghanaian cocoa (Theobroma cacao l.) bean shells coproducts: Effect of particle size on chemical composition, bioactive compound content and antioxidant activity. Agronomy, 11(2). https://doi.org/10.3390/agronomy11020401
dc.relationBotero, N., Londoño, L. v, & Rojas, L. F. (2016). Extracción de polifenoles totales asistida por enzimas, a partir de residuos de la industria del cacao. Agronomía Colombiana, 34(1).
dc.relationBrewer, M. S. (2011). Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety, 10(4). https://doi.org/10.1111/j.1541-4337.2011.00156.x
dc.relationCampos-Vega, R., Nieto-Figueroa, K. H., & Oomah, B. D. (2018). Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends in Food Science and Technology, 81(September), 172–184. https://doi.org/10.1016/j.tifs.2018.09.022
dc.relationCancer Today. 2022. https://gco.iarc.fr/today/home
dc.relationCantele, C., Rojo-Poveda, O., Bertolino, M., Ghirardello, D., Cardenia, V., Barbosa-Pereira, L., & Zeppa, G. (2020). In vitro bioaccessibility and functional properties of phenolic compounds from enriched beverages based on cocoa bean shell. Foods, 9(6). https://doi.org/10.3390/FOODS9060715
dc.relationCastañeda, S. J., Rodríguez, C. J., & Lugo, C. E. (2016). Análisis del perfil de compuestos volátiles de cacao criollo (Theobroma cacao L.) durante el proceso de fermentación y secado por componentes principales (p. 8).
dc.relationCastillo, E., Alvarez, C., & Contreras, Y. (2018). Caracterización fisicoquímica de la cáscara del fruto de un clon de cacao (theobroma cacao l .) Cosechados en Caucagua , estado Miranda . Venezuela. Revista de Investigación, 42(95), 154–176. Retrieved from https://www.redalyc.org/jatsRepo/3761/376160247008/376160247008.pdf
dc.relationChemat, F., Abert Vian, M., Fabiano-Tixier, A. S., Nutrizio, M., Režek Jambrak, A., Munekata, P. E. S., … Cravotto, G. (2020). A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry, 22(8), 2325–2353. https://doi.org/10.1039/c9gc03878g
dc.relationChemat, F., Vian, M. A., & Cravotto, G. (2012). Green extraction of natural products: Concept and principles. En International Journal of Molecular Sciences (Vol. 13, Número 7). https://doi.org/10.3390/ijms13078615
dc.relationChun, K. S., Husseinsyah, S., & Osman, H. (2014). Development of biocomposites from Cocoa pod husk and Polypropylene: Effect of filler content and 3-aminopropyltriethoxylsilane. Polymers from Renewable Resources, 5(4), 139–156. https://doi.org/10.1177/204124791400500401
dc.relationChun, K. S., Husseinsyah, S., & Yeng, C. M. (2016). Effect of green coupling agent from waste oil fatty acid on the properties of polypropylene/cocoa pod husk composites. Polymer Bulletin, 73(12), 3465–3484.
dc.relationCinar, Z. Ö., Atanassova, M., Tumer, T. B., Caruso, G., Antika, G., Sharma, S., Sharifi-Rad, J., & Pezzani, R. (2021). Cocoa and cocoa bean shells role in human health: An updated review. Journal of Food Composition and Analysis, 103(January). https://doi.org/10.1016/j.jfca.2021.104115
dc.relationCiprián, M., (2020). Aplicación de la cáscara del grano de cacao (Theobroma cacao L.) como fuente de flavonoides en productos a base de cereales: Revisión de literatura. Escuela Agrícola Panamericana, Zamorano Honduras. https://bdigital.zamorano.edu/server/api/core/bitstreams/a1c5bf9b-bd4c-4e23-99b9-3acdcec8fab9/content
dc.relationCoelho MS, Fernandes SS, Salas-Mellado M de las M. (2019). Association Between Diet, Health, and the Presence of Bioactive Compounds in Foods. Bioactive Compounds. 159-183 p.
dc.relationCompañía Nacional de Chocolates S.A.S. (2019). COSECHA, BENEFICIO Y CALIDAD DEL GRANO DE CACAO (Theobroma cacao L.). https://chocolates.com.co/wp-content/uploads/2020/06/Cartilla-Cosecha-Benef-Calidad-SEP-2019.pdf
dc.relationContreras, W. G. (2016). Validación de la determinación de los ácidos fenólicos presente en la infusión de cascarilla de la semilla de cacao (Theobroma cacao) por el equipo de electroforesis capilar. IOSR Journal of Economics and Finance, 3(1).
dc.relationCsiktusnádi Kiss, G. A., Forgács, E., Cserháti, T., Mota, T., Morais, H., & Ramos, A. (2000). Optimisation of the microwave-assisted extraction of pigments from paprika (Capsicum annuum L.) powders. Journal of Chromatography A, 889(1-2). https://doi.org/10.1016/S0021-9673(00)00440-4
dc.relationCuéllar, O. G., Quím, T., & Gloria Guerrero, A. (2012). Actividad antibacteriana de la cáscara de cacao, Theobroma cacao L. Revista MVZ Cordoba, 17(3), 3176–3183. https://doi.org/10.21897/rmvz.218
dc.relationDang, Y. K. T., & Nguyen, H. V. H. (2019). Effects of Maturity at Harvest and Fermentation Conditions on Bioactive Compounds of Cocoa Beans. Plant Foods for Human Nutrition, 74(1). https://doi.org/10.1007/s11130-018-0700-3
dc.relationDelgado-Ospina, J., Lucas-González, R., Viuda-Martos, M., Fernández-López, J., Pérez-Álvarez, J. Á., Martuscelli, M., & Chaves-López, C. (2021). Bioactive compounds and techno-functional properties of high-fiber co-products of the cacao agro-industrial chain. Heliyon, 7(4). https://doi.org/10.1016/j.heliyon.2021.e06799
dc.relationDewi, S. R., Stevens, L., Irvine, D., & Ferrari, R. (2021). Microwave-assisted extraction of Phenolic from cacao pod usks -an alternative for valorisation Microwave-Assited extraction of Phenolic from cacao pod husks - an alternative for valorisation. Conference: 18th International Conference on Microwave and High-Frequency Applications: AMPERE 2021At: Gothenburg, Sweden, 1(November). https://doi.org/10.5281/zenodo.5645566
dc.relationDíaz, R. O., & Hernández, M. S. (2020). Theobromas from the Colombian Amazon: A healthy alternative. Informacion Tecnologica, 31(2), 3–10. https://doi.org/10.4067/S0718-07642020000200003.
dc.relationDi Mattia CD, Sacchetti G, Mastrocola D, Serafini M. 2017. From Cocoa to Chocolate: The Impact of Processing on In Vitro Antioxidant Activity and the Effects of Chocolate on Antioxidant Markers In Vivo. Front Immunol. 8. eng.
dc.relationDircks, H. D. (2009). Investigation into the fermentation of Australian cocoa beans and its effect on microbiology, chemistry and flavour. The University of New South Wales, Australia.
dc.relationDomínguez-Pérez, L. A., Lagunes-Gálvez, L. M., Barajas-Fernández, J., Olán-Acosta, M. de los Á., García-Alamilla, R., & García-Alamill1, P. (2019). Vibrational characterization of functional groups in cocoa beans during roasting with Fourier transform infrared spectroscopy. 17.
dc.relationDos Anjos Lopes, S. M., Martins, M. V., de Souza, V. B., & Tulini, F. L. (2021). Evaluation of the Nutritional Composition of Cocoa Bean Shell Waste (Theobroma cacao) and Application in the Production of a Phenolic-rich Iced Tea. Journal of Culinary Science and Technology. https://doi.org/10.1080/15428052.2021.2016531
dc.relationElKhori, S., Paré, J. R. J., Bélanger, J. M. R., & Pérez, E. (2007). The microwave-assisted process (MAPTM1): Extraction and determination of fat from cocoa powder and cocoa nibs. Journal of Food Engineering, 79(3). https://doi.org/10.1016/j.jfoodeng.2006.01.089
dc.relationFedecacao, 2021. Un año difícil, pero con aprendizaje y buenas noticias. Periódico de Fedecacao Fondo Nacional del Cacao - No. 57
dc.relationFedecacao, 2020. Federación Nacional de Cacaoteros El Cacaocultor es lo Primero Economía Internacional. Available online: https: //www.fedecacao.com.co/portal/index.php/es/2015-02-12-17-20-59/nacionales (acceso octubre 2020).
dc.relationFitri, E., Effendi., Azra, A. (2021). Utilization of Dry Cocoa Pod Husks as an Antioxidant-Rich Herbal Drink. Eksakta: Berkala Llmiah Bidang MIPA, 22(02), 102–109. https://doi.org/https://doi.org/10.24036//eksakta/vol21-iss2/262
dc.relationFlórez-Montes, A. F. Rojas-González, S. Rodríguez-Barona. 2021 “Evaluation of Extracts Obtained from Fruit Wastes Using Different Methods”, Ingeniería, Vol. 26, Num. 1, (2021).
dc.relationGarcía Arciniegas, M & Ochoa Pineda, J. (2017). Caracterización y evaluación de citotoxicidad de hidrogeles para potencial uso como adhesivo óseo. Universidad de los Andes.
dc.relationGarcía, D., Sotero, V., Mancini, D., Torres, R. P., & Filho, J. (2011). Evaluación de la actividad antioxidante “In vivo” de tres frutos de la amazonía: Gustavia augusta L., Grias neuberthii Macbr y Theobroma bicolor. Revista de La Sociedad Química Del Perú, 77(1), 44–55.
dc.relationGiralda Herguedas, C. (2017). Estudio experimental de la extracción de polifenoles de alperujo de aceituna por extracción asistida con microondas [Máster en Ingeniería Industrial, universidad de Valladolid]. Repositorio institucional Universidad de Valladolid http://uvadoc.uva.es/handle/10324/25808
dc.relationGrillo, G., Boffa, L., Binello, A., Mantegna, S., Cravotto, G., Chemat, F., Dizhbite, T., Lauberte, L., & Telysheva, G. (2019). Cocoa bean shell waste valorisation; extraction from lab to pilot-scale cavitational reactors. Food Research International, 115, 200–208. https://doi.org/10.1016/j.foodres.2018.08.057
dc.relationGómez-García, F. J., López, A. L., Guerrero-Sánchez, Y., Siles, M. S., Díaz, F. M., & Alonso, F. C. (2020). Chemopreventive effect of pomegranate and cocoa extracts on ultraviolet radiation-induced photocarcinogenesis in SKH-1 mice. PLoS ONE, 15(4). https://doi.org/10.1371/journal.pone.0232009
dc.relationGutiérrez, G. A & López, B, J. (2018). Aprovechamiento gastronomico de la cascara del cacao. http:// bibliotecavirtualoducal.uc.cl:8081/handle/123456789/1604993
dc.relationHansen, P. E., & Spanget-Larsen, J. (2003). NMR and IR Spectroscopy of Phenols. In Z. Rappoport (Ed.), The Chemistry of Phenols (pp. 333-393). Wiley.
dc.relationHerrera Ardila, Y. (2013). Microencapsulación de compuestos con poder antioxidante extraídos a partir de semillas sin fermentar de Theobroma cacao y Theobroma grandiflorum.
dc.relationHerrera F & Castro H. (2016). Obtención de antioxidantes a partir del epicarpio de café (coffea arabica L.) empleando fluidos presuriados, una alternativa de aprovechamiento para este residuo agroindustrial. Tesis de grado. [Internet]. Bogotá. Available from: https://repository.unilibre.edu.co/handle/10901/10362
dc.relationHerrera-Rengifo JD, Villa-Prieto L, Olaya-Cabrera AC, García-Alzate LS. (2020). Extracción de almidón de cáscara de cacao Theobroma cacao L. como alternativa de bioprospección.. rev. ion. 2020;33(2):25-34. doi:10.18273/revion.v33n2-2020002
dc.relationHernández, C. (2018). Análisis de la composición química del cacao, extracción y estudio de compuestos antioxidantes en genotipos del banco de germopasma de México. Tesis Doctoral. Universidad de Sevilla
dc.relationHernández. J. (2015). ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ciencias Naturales y Matemáticas “Obtención a escala laboratorio de polifenoles a partir de la cáscara de cacao y su utilidad como aditivo conservante de aceites vegetales comestibles”.
dc.relationHernández Hernández, C. (2018). Análisis de la composición química del cacao, extracción y estudio de compuestos antioxidantes en genotipos del banco de germoplasma de México. 1-124. https://idus.us.es/handle/11441/82298
dc.relationHu, Q., He, Y., Wang, F., Wu, J., Ci, Z., Chen, L., Xu, R., Yang, M., Lin, J., Han, L., & Zhang, D. (2021). Microwave technology: a novel approach to the transformation of natural metabolites. En Chinese Medicine (United Kingdom) (Vol. 16, Número 1). BioMed Central Ltd. https://doi.org/10.1186/s13020-021-00500-8
dc.relationIbrahim, N. H., Mahmud, M. S., & Nurdin, S. (2020). Microwave-assisted extraction of β-sitosterol from cocoa shell waste. IOP Conference Series: Materials Science and Engineering, 991(1). https://doi.org/10.1088/1757-899X/991/1/012106
dc.relationICCO, 2021. International Cacao Organization. Available online: https://www.icco.org/about-cacao/chocolate-industry.html (access September 2021).
dc.relationICCO, 2022. International Cacao Organization. Available online: https://www.icco.org/about-cacao/chocolate-industry.html (access October 2022).
dc.relationInternational Agency for Research on Cancer. 2022. https://www.iarc.who.int/cancer-topics/
dc.relationITC, 2022. List of exporters for product: 1802 Cocoa shells, husks, skins and other cocoa waste. Available online: Trade Map. https://www.trademap.org/Count ry_SelProduct_TS.aspx?nvpm=1%7C%7C%7C%7C%7C1802%7C%7C%7C4%7C1% 7C1%7C2%7C2%7C1%7C2%7C1%7C1%7C1 (acceso septiembre 2022).
dc.relationJakovljević, M., Jokić, S., Ačkar, Đ., Molar, M., Miškulin, M., & Palović, N. (2019). Green extraction techniques of bioactive components from cocoa shell. Croatian Journal of Food Science and Technology, 11(1), 11–20. https://doi.org/10.17508/cjfst.2019.11.1.02
dc.relationJinap, M. S., Jamilah, B., & Nazamid, S. (2004). Effect of polyphenol concentration on pyrazine formation during cocoa liquor roasting. Food Chemistry, 85(1). https://doi.org/10.1016/j.foodchem.2003.06.005
dc.relationJokić, S., Gagić, T., Knez, E., Ubarić, D., & Kerget, M. (2018). Separation of active compounds from food by-product (Cocoa Shell) using subcritical water extraction. Molecules, 23(6). https://doi.org/10.3390/molecules23061408
dc.relationKaufmann, B., & Christen, P. (2002). Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochemical Analysis, 13(2), 105-113. https://doi.org/10.1002/pca.631
dc.relationKayaputri, I. L., Sumanti, D. M., Djali, M., Indiarto, R., & Dewi, D. L. (2014). KAJIAN FITOKIMIA EKSTRAK KULIT BIJI KAKAO (Theobroma cacao L.). Chimica et Natura Acta, 2(1), 83–90. https://doi.org/10.24198/cna.v2.n1.9140
dc.relationKi, W. L., Hwang, E. S., Nam, J. K., Kyoung, H. K., & Hyong, J. L. (2005). Extraction and chromatographic separation of anticarcinogenic fractions from cacao bean husk. BioFactors, 23(3). https://doi.org/10.1002/biof.5520230303
dc.relationKumar, R. C., Benal, M. M., Prasad, B. D., Krupashankara, M. S., Kulkarni, R. S., & Siddaligaswamy, N. H. (2018). Microwave assisted extraction of oil from pongamia pinnata seeds. Materials Today: Proceedings, 5(1). https://doi.org/10.1016/j.matpr.2018.01.094
dc.relationKumar, S. P. J., Garlapati, V. K., Gujjala, L. K. S., & Banerjee, R. (2021). Technologies for oil extraction from oilseeds and oleaginous microbes. En Three Phase Partitioning: Applications in Separation and Purification of Biological Molecules and Natural Products. https://doi.org/10.1016/B978-0-12-824418-0.00011-4
dc.relationLateef, A., Azeez, M. A., Asafa, T. B., Yekeen, T. A., Akinboro, A., Oladipo, I. C., … Beukes, L. S. (2016). Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. Journal of Nanostructure in Chemistry, 6(2), 159–169. https://doi.org/10.1007/s40097-016-0191-4
dc.relationLCCC. Liga Colombiana Contra el Cáncer. 2022. https://www.ligacancercolombia.org/promocion-y-prevencion/
dc.relationLecumberri, E., Mateos, R., Izquierdo-Pulido, M., Rupérez, P., Goya, L., & Bravo, L. (2007). Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chemistry, 104(3), 948–954. https://doi.org/10.1016/j.foodchem.2006.12.054
dc.relationLembong, E., Djali, M., & Utama, G. L. (2021). Antioxidant properties of cocoa (Theobroma cocoa L.) shell powder in fermentation and immersion treatments. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 69(4), 533–541. https://doi.org/10.11118/actaun.2021.048
dc.relationLock-Navarro, D. H. (2018). Potencial energético de los residuos de la cadena de valor del cacao (Theobroma Cacao) en la Región Madre de Dios. Universidad Nacional Agraria La Molina, 96. http://repositorio.lamolina.edu.pe/handle/UNALM/3660
dc.relationLu, F., Rodriguez-Garcia, J., Van Damme, I., Westwood, N. J., Shaw, L., Robinson, J. S., … Charalampopoulos, D. (2018). Valorisation strategies for cocoa pod husk and its fractions. Current Opinion in Green and Sustainable Chemistry, 14, 80–88. https://doi.org/10.1016/j.cogsc.2018.07.007
dc.relationMariatti, F., Gunjević, V., Boffa, L., & Cravotto, G. (2021). Process intensification technologies for the recovery of valuable compounds from cocoa by-products. Innovative Food Science and Emerging Technologies, 68(January). https://doi.org/10.1016/j.ifset.2021.102601
dc.relationMartínez, R., Torres, P., Meneses, M. A., Figueroa, J. G., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2012). Chemical, technological and in vitro antioxidant properties of cocoa (Theobroma cacao L.) co-products. Food Research International, 49(1), 39–45. https://doi.org/10.1016/j.foodres.2012.08.005
dc.relationMashuni, Hamid, F. H., Muzuni, Kadidae, L. O., Jahiding, M., Ahmad, L. O., & Saputra, D. (2020). The determination of total phenolic content of cocoa pod husk based on microwave-assisted extraction method. AIP Conference Proceedings, 2243(June). https://doi.org/10.1063/5.0001364
dc.relationMellinas, A. C., Jiménez, A., & Garrigós, M. C. (2020). Optimization of microwave-assisted extraction of cocoa bean shell waste and evaluation of its antioxidant, physicochemical and functional properties. Lwt, 127(March), 109361. https://doi.org/10.1016/j.lwt.2020.109361
dc.relationMellinas, C., Jiménez, A., & Garrigós, M. C. (2019). Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using theobroma cacao l. bean shell extract. Molecules, 24(22). https://doi.org/10.3390/molecules24224048
dc.relationMenéndez, J.A. (2017). Introducción al calentamiento con microondas. En Menéndez, J.A., Moreno, A.H. (Eds.). (2017). Aplicaciones industriales del calentamiento con energía microondas. Latacunga, Ecuador: Editorial Universidad Técnica de Cotopaxi, Primera Edición, pp 315. ISBN: 978-9978- 395-34-9
dc.relationMeza-Sepúlveda, D. C., Castro, A. M., Zamora, A., Arboleda, J. W., Gallego, A. M., & Camargo-Rodríguez, A. v. (2021). Bio-based value chains potential in the management of cacao pod waste in colombia, a case study. Agronomy, 11(4), 1-17. https://doi.org/10.3390/agronomy11040693
dc.relationMinisterio de Salud y Protección Social- Instituto Nacional de Cancerología. Plan Decenal para el Control del Cáncer en Colombia. 2012-2021. https://www.minsalud.gov.co/Documents/Plan-Decenal-Cancer/PlanDecenal_ControlCancer_2012-2021.pdf
dc.relationMiranda, P. M., Ganda, P. G. P., & Suhendra, L. (2020). Karakteristik Ekstrak Kulit Buah Kakao (Theobroma cacao L.) sebagai Sumber Antioksidan pada Perlakuan Konsentrasi Pelarut dan Ukuran Partikel. Rekayasa Dan Manajemen Agroindustri, 8(1), 28–38.
dc.relationMolano, J. (2021). Uso de la cáscara de cacao como fuente primaria para la obtención de materiales aplicados a la ingeniría mediante el estudio de las propiedades mecanicas.
dc.relationMotamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003311
dc.relationMuharja, M., Darmayanti, R. F., Palupi, B., Rahmawati, I., Fachri, B. A., Setiawan, F. A., … Putri, D. K. Y. (2021). Optimization of microwave-assisted alkali pretreatment for enhancement of delignification process of cocoa pod husk. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1). https://doi.org/10.9767/BCREC.16.1.8872.31-43
dc.relationMurillo-Baca, S. M., Ponce-Rosas, F. C., & Huamán-Murillo, M. D. J. (2020). Características fisicoquímicas , compuestos bioactivos y contenido de minerales en la harina de cáscara del fruto de cacao ( Theobroma cacao L .) Physicochemical characteristics , bioactive compounds and minerals content in cocoa fruit ( Theobroma cacao L. Manglar, 17(1), 67–73.
dc.relationMurillo, I. (2008). Evaluación De 2 Dietas Experimentales Con Diferentes Niveles De Cascarilla De Cacao (Theobroma Cacao L.) En Las Fases De Crecimiento Y Acabado De Cuyes (Cavia Porcellus L.) De Raza Andina. Tesis de Ingeniero en Alimentos. Escuela Superior Politécnica del Litoral (ESPOL), Facultad de Ingeniería Mecánica y Ciencias de la Producción, Guayaquil - Ecuador.
dc.relationNazaruddin, R., Seng, L. K., Hassan, O., & Said, M. (2006). Effect of pulp preconditioning on the content of polyphenols in cocoa beans (Theobroma Cacao) during fermentation. Industrial Crops and Products, 24(1). https://doi.org/10.1016/j.indcrop.2006.03.013
dc.relationNguyen, V. T., Le, M. D., Nguyen, T. T. T., Khong, T. T., Nguyen, V. H., Nguyen, H. N., … Trang, T. S. (2020). Microwave-assisted extraction for optimizing saponin yield and antioxidant capacity from cacao pod husk (Theobroma cacao L.). Journal of Food Processing and Preservation, 45(2), 1–15. https://doi.org/10.1111/jfpp.15134
dc.relationNguyen, V. T., Tran, A. X., & Le, V. A. T. (2021b). Microencapsulation of phenolic-enriched extract from cocoa pod husk (Theobroma cacao L.). Powder Technology, 386, 136–143. https://doi.org/10.1016/j.powtec.2021.03.033
dc.relationNguyen, V. T., Tran, T. G., & Tran, N. Le. (2021a). Phytochemical compound yield and antioxidant activity of cocoa pod husk (Theobroma cacao L.) as influenced by different dehydration conditions. Drying Technology, 0(0), 1–13. https://doi.org/10.1080/07373937.2021.1913745
dc.relationNieto-Figueroa, K. H., Mendoza-García, N. V., Gaytán-Martínez, M., Wall-Medrano, A., Guadalupe Flavia Loarca-Piña, M., & Campos-Vega, R. (2020). Effect of drying methods on the gastrointestinal fate and bioactivity of phytochemicals from cocoa pod husk: In vitro and in silico approaches. Food Research International, 137. https://doi.org/10.1016/j.foodres.2020.109725
dc.relationNieto-Figueroa, K. H. (2019). Evaluación nutritiva, nutracéutica y funcional in vitro de la vaina de cacao (Theobroma cacao L.). Tesis de Maestría en Ciencia y Tecología de Alimentos. Universidad Autónoma de Qrerétaro.
dc.relationOke, E. O., Okolo, B. I., Adeyi, O., Adeyi, J. A., Otolorin, J. A., Nnabodo, D., Ude, C. J., Okhale, S. E., Adeyanju, J. A., Adeniyi, A. G., Eleanyan, E., & Agbai, S. O. (2022). Bioactive Extract Production from Citrullus Clocynthis Fruit via Microwave-Assisted Extraction: Experimental Optimization, Process Design and Economics with Uncertainty Quantification. Journal of Pharmaceutical Innovation. https://doi.org/10.1007/s12247-022-09676-4
dc.relationOkiyama, D. C. G., Soares, I. D., Cuevas, M. S., Crevelin, E. J., Moraes, L. A. B., Melo, M. P., Oliveira, A. L., & Rodrigues, C. E. C. (2018). Pressurized liquid extraction of flavanols and alkaloids from cocoa bean shell using ethanol as solvent. Food Research International, 114, 20-29. https://doi.org/10.1016/j.foodres.2018.07.055
dc.relationOracz, J., Zyzelewicz, D., & Nebesny, E. (2015). The Content of Polyphenolic Compounds in Cocoa Beans (Theobroma cacao L.), Depending on Variety, Growing Region, and Processing Operations: A Review. Critical Reviews in Food Science and Nutrition, 55(9), 1176–1192. doi.org/10.1080/10408398.2012.686934
dc.relationOrdoñez, E. S., Leon-Arevalo, A., Rivera-Rojas, H., & Vargas, E. (2019). Quantification of total polyphenols and antioxidant capacity in skins and seeds from cacao (Theobroma cacao L.), tuna (Opuntia ficus indica Mill), grape (Vitis Vinífera) and uvilla (Pourouma cecropiifolia). Scientia Agropecuaria, 10(2), 175–183. https://doi.org/10.17268/sci.agropecu.2019.02.02
dc.relationOrozco, C. S. (2020). Apoyo al mejoramiento del sistema productivo de la asociación ACEFUVER Universidad de Antioquia Facultad de Ingeniería, Programa de Ingeniería Bioquímica Chigorodó, Colombia.
dc.relationOrtiz-Rodríguez, L; Sandoval-Salas, F; Morales-Olán, G & Arcila-Lozano. (2022). Tecnologías Emergentes Aplicadas en Alimentos T-I. ECORFAN. https://www.researchgate.net/publication/362684051_Handbook_Tecnologias_Emergentes_Aplicadas_en_Alimentos
dc.relationOtálora-Orrego, D., & Martin G., D. A. (2020). Técnicas emergentes de extracción de β-caroteno para la valorización de subproductos agroindustriales de la zanahoria (Daucus carota L.): una revisión. Informador Técnico, 85(1). https://doi.org/10.23850/22565035.2857
dc.relationPangestu, R., Amanah, S., Juanssilfero, A. B., Yopi, & Perwitasari, U. (2020). Response surface methodology for microwave-assisted extraction of pectin from cocoa pod husk (Theobroma cacao) mediated by oxalic acid. Journal of Food Measurement and Characterization, 14(4), 2126-2133. https://doi.org/10.1007/s11694-020-00459-4
dc.relationPasquet, V., Chérouvrier, J. R., Farhat, F., Thiéry, V., Piot, J. M., Bérard, J. B., Kaas, R., Serive, B., Patrice, T., Cadoret, J. P., & Picot, L. (2011). Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochemistry, 46(1), 59-67. https://doi.org/10.1016/j.procbio.2010.07.009
dc.relationPérez-Loredo, M. G., Jesús, L. H. De, & Barragán-Huerta, B. E. (2017). Extracción de compuestos bioactivos de pitaya roja (Stenocereus stellatus) aplicando pretratamientos con microondas, ultrasonido y enzimáticos. Agrociencia, 51(2).
dc.relationPuertas, M. A., Mosquera-Mosquera, N., & Rojano, B. (2016). Estudio de la capacidad antioxidante in vitro de Phaseolus vulgaris L. (frijol) mediante extracción asistida por microondas. Revista Cubana de Plantas Medicinales, 21(1).
dc.relationPorto de Souza Vandenberghe, L., Kley Valladares-Diestra, K., Amaro Bittencourt, G., Fátima Murawski de Mello, A., Sarmiento Vásquez, Z., Zwiercheczewski de Oliveira, P., … Ricardo Soccol, C. (2022). Added-value biomolecules’ production from cocoa pod husks: A review. Bioresource Technology, 344(October 2021). https://doi.org/10.1016/j.biortech.2021.126252
dc.relationRachmawaty, Mu’Nisa, A., Hasri, Pagarra, H., & Hartati. (2019). Analysis of phenolic content and antioxidant activity of cocoa pod husk (theobroma cacao l.). Journal of Physics: Conference Series, 1317(1). https://doi.org/10.1088/1742-6596/1317/1/012087
dc.relationRahayu, P. P., Rosyidi, D., Purwadi, & Thohari, I. (2019). Characteristics of catechin extracted from cocoa husks using microwave assisted extraction (MAE). Biodiversitas, 20(12), 3626–3631. https://doi.org/10.13057/biodiv/d201222
dc.relationRahmawati, I., Fachri, B. A., Manurung, Y. H., Nurtsulutsiyah, & Reza, M. (2021). Application of response surface methodology in optimization condition of anthocyanin extraction process of cocoa peel waste with Microwave Assisted Extraction Method (MAE). IOP Conference Series: Earth and Environmental Science, 743(1). https://doi.org/10.1088/1755-1315/743/1/012091
dc.relationRamos, S., Salazar, M., Nascimento, L., Carazzolle, M., Pereira, G., Delforno, T., Nascimento, M., de Aleluia, T., Celeghini, R., & Efraim, P. (2020). Influence of pulp on the microbial diversity during cupuassu fermentation. International Journal of Food Microbiology, 318, 108465. https://doi.org/10.1016/j.ijfoodmicro.2019.108465
dc.relationRebollo-Hernanz, M., Cañas, S., Taladrid, D., Segovia, Á., Bartolomé, B., Aguilera, Y., & Martín-Cabrejas, M. A. (2021). Extraction of phenolic compounds from cocoa shell: Modeling using response surface methodology and artificial neural networks. Separation and Purification Technology, 270. https://doi.org/10.1016/j.seppur.2021.118779
dc.relationReyes Melinao, C.E. (2021). Evaluación de métodos de extracción asistida por ultrasonido y microondas para la liberación de compuestos de interés desde pomasa de tomate deshidratada. [ Agronomía Universidad de Talca Chile]. Repositorio Biblioteca Universidad de Talca http://dspace.utalca.cl/handle/1950/12551
dc.relationRojas, L. M. (2019). Aprovechamiento de la cáscara de Cacao para la elaboración de un biocomposito con aplicación en la construcción sostenible. Recuperado de: http://hdl.handle.net/20.500.12495/2817.
dc.relationRojo-Poveda, O., Barbosa-Pereira, L., Mateus-Reguengo, L., Bertolino, M., Stévigny, C., & Zeppa, G. (2019b). Effects of particle size and extraction methods on cocoa bean shell functional beverage. Nutrients, 11(4). https://doi.org/10.3390/nu11040867
dc.relationRojo-Poveda, O., Barbosa-Pereira, L., Orden, D., Stévigny, C., Zeppa, G., & Bertolino, M. (2020a). Physical properties and consumer evaluation of cocoa bean shell-functionalized biscuits adapted for diabetic consumers by the replacement of sucrose with tagatose. Foods, 9(6). https://doi.org/10.3390/foods9060814
dc.relationRojo-Poveda, O., Barbosa-Pereira, L., Zeppa, G., & Stévigny, C. (2020b). Cocoa bean shell—a by-product with nutritional properties and biofunctional potential. In Nutrients (Vol. 12, Issue 4). MDPI AG. https://doi.org/10.3390/nu12041123
dc.relationRojo-Poveda, O., Oliveira Ribeiro, S., Anton-Sales, C., Keymeulen, F., Barbosa-Pereira, L., Delporte, C., Zeppa, G., Stévigny, C., & Rojo-Poveda Student, O. (2019a). Evaluation of Cocoa Bean Shell Antimicrobial Activity: a Tentative Assay Using a Metabolomic Approach for Active Compound Identification.
dc.relationRojo-Poveda, O., Zeppa, G., Ferrocino, I., Stévigny, C., & Barbosa-Pereira, L. (2021). Chemometric classification of cocoa bean shells based on their polyphenolic profile determined by rp-hplc-pda analysis and spectrophotometric assays. Antioxidants, 10(10). https://doi.org/10.3390/antiox10101533
dc.relationRossin, D., Barbosa-Pereira, L., Iaia, N., Sottero, B., Danzero, A. C., Poli, G., Zeppa, G., & Biasi, F. (2021). Protective effect of cocoa bean shell against intestinal damage: An example of byproduct valorization. Antioxidants, 10(2), 1-18. https://doi.org/10.3390/antiox10020280
dc.relationSánchez-Camargo, A. del P., Ballesteros-Vivas, D., Buelvas-Puello, L. M., Martinez-Correa, H. A., Parada-Alfonso, F., Cifuentes, A., … Gutiérrez, L. F. (2021). Microwave-assisted extraction of phenolic compounds with antioxidant and anti-proliferative activities from supercritical CO2 pre-extracted mango peel as valorization strategy. Lwt, 137(June 2020). https://doi.org/10.1016/j.lwt.2020.110414
dc.relationSánchez-Patán, F., Monagas, M., Moreno-Arribas, M. V., & Bartolomé, B. (2011). Determination of microbial phenolic acids in human faeces by UPLC-ESI-TQ MS. Journal of Agricultural and Food Chemistry, 59(6). https://doi.org/10.1021/jf104574z
dc.relationSanchez-Reinoso, Z., Mora-Adames, W. I., Fuenmayor, C. A., Darghan-Contreras, A. E., Gardana, C., & Gutiérrez, L. F. (2020). Microwave-assisted extraction of phenolic compounds from Sacha Inchi shell: Optimization, physicochemical properties and evaluation of their antioxidant activity. Chemical Engineering and Processing - Process Intensification, 153(May), 107922. https://doi.org/10.1016/j.cep.2020.107922
dc.relationSangronis, E., Soto, M. J., Valero, Y., & Buscema, I. (2014). Cascarilla de cacao Venezolano como materia prima de infusiones. Archivos Latinoamericanos de Nutricion, 64(2), 123–130.
dc.relationSarah, M., Hisham, M. F., Rizki, M., & Erwinda, R. (2020). Effect of power and time in pectin production from cocoa pod husk using microwave-assisted extraction technique. International Journal of Renewable Energy Development, 9(1). https://doi.org/10.14710/ijred.9.1.123-130
dc.relationSarmiento Hernández, J. S. (2019) Evaluación del uso de la cáscara de cacao como sustituto parcial de la matriz polimérica en la obtención de espumas de poliuretano (Trabajo de grado). Fundación Universidad de América. Retrieved from http://hdl.handle.net/20.500.11839/7406
dc.relationSingh, A., Ahmad, S., & Ahmad, A. (2015). Green extraction methods and environmental applications of carotenoids-a review. En RSC Advances (Vol. 5, Número 77). https://doi.org/10.1039/c5ra10243j
dc.relationSingh, A. K., Rana, H. K., & Pandey, A. K. (2020). Analysis of chlorophylls. En Recent Advances in Natural Products Analysis. https://doi.org/10.1016/B978-0-12-816455-6.00019-6
dc.relationSiow, C. S., Chan, E. W. C., Wong, C. W., & Ng, C. W. (2022). Antioxidant and sensory evaluation of cocoa (Theobroma cacao L.) tea formulated with cocoa bean hull of different origins. Future Foods, 5. https://doi.org/10.1016/j.fufo.2021.100108
dc.relationSládková, A., Benedeková, M., Stopka, J., Šurina, I., Ház, A., Strižincová, P., Čižová, K., Škulcová, A., Burčová, Z., Kreps, F., Šima, J., & Jablonský, M. (2016). PEER-REVIEWED BRIEF COMMUNICATION bioresources.com Yield of Polyphenolic Substances Extracted from Spruce (Picea abies) Bark by Microwave-Assisted Extraction. In BioResources (Vol. 11, Issue 4).
dc.relationSoares, T. F., & Oliveira, M. B. P. P. (2022). Cocoa By-Products: Characterization of Bioactive Compounds and Beneficial Health Effects. En Molecules (Vol. 27, Número 5). MDPI. https://doi.org/10.3390/molecules27051625
dc.relationSotelo, L., Alvis, A., & Arrázola, G. (2015). Evaluation of epicatechin, theobromine and caffeine in cacao husks (Theobroma cacao L.), determination of the antioxidant capacity. Revista Colombiana de Ciencias Hortícolas, 9(1), 124–134. Retrieved from http://dx.doi.org/10.17584/rcch.2015v9i1.3751
dc.relationSoto, M. (2012). Desarrollo Del Proceso De Producción De Cascarilla De Semilla De Cacao En Polvo Destinada Al Consumo Humano. 69. http://infocafes.com/portal/wp-content/uploads/2017/07/000155680.pdf
dc.relationSoto Mora, J. E., & Roa, S. C. (2021). Artículo de Investigación Evaluación del comportamiento del color del vino artesanal de curuba “Son del Alba” Evaluation of the behavior of the color of the curuba artisan wine " Son del Alba ”. Revista Ingeniería y Región, 26, 4–19. https://doi.org/10.25054/22161325.2915
dc.relationStrati, I. F., & Oreopoulou, V. (2014). Recovery of carotenoids from tomato processing by-products - A review. Food Research International, 65(PC). https://doi.org/10.1016/j.foodres.2014.09.032
dc.relationSun, T., & Ho, C. T. (2001). Antiradical efficiency of tea components. Journal of Food Lipids, 8(3). https://doi.org/10.1111/j.1745-4522.2001.tb00198.x
dc.relationTamrin, Faradilla, R. H. F., Ibrahim, M. N., Rejeki, S., Ufrianto, N., & Cahyani, D. R. (2020). Understanding the heat stability and solubility of cocoa bean shell extract as antioxidant and antibacterial functional ingredients. International Food Research Journal, 27(4), 660–665.
dc.relationTaparia, S. S., & Khanna, A. (2016). Procyanidin-rich extract of natural cocoa powder causes ROS-mediated caspase-3 dependent apoptosis and reduction of pro-MMP-2 in epithelial ovarian carcinoma cell lines. Biomedicine and Pharmacotherapy, 83. https://doi.org/10.1016/j.biopha.2016.06.019
dc.relationTapia, A. (2015). Cascarilla de cacao (Theobroma cacao l.) Variedad arriba y ccn51 para la elaboración de una infusión. Facultad de Ingeniería, Carrera Alimentos., 143. http://repositorio.uta.edu.ec/bitstream/123456789/11981/1/AL 574.pdf
dc.relationTaşkın, B., & Aksoylu Özbek, Z. (2020). Optimisation of microwave effect on bioactives contents and colour attributes of aqueous green tea extracts by central composite design. Journal of Food Measurement and Characterization, 14(4), 2240–2252. https://doi.org/10.1007/s11694-020-00471-8
dc.relationThu Dao, T. A., Webb, H. K., & Malherbe, F. (2021). Optimization of pectin extraction from fruit peels by response surface method: Conventional versus microwave-assisted heating. Food Hydrocolloids, 113(June 2020), 106475. https://doi.org/10.1016/j.foodhyd.2020.106475
dc.relationTiburcio, P. B. (2017). Solid-state fermentation of Theobroma cacao pod husk using Rhizopus stolonifera - prospection of biomoleculesMSc. Thesis. Curitiba, Paraná, Brazil: Universiade Federal do Paraná.
dc.relationUmrigar, V., Chakraborty, M., & Parikh, P. A. (2022). Optimization of microwave-assisted esterification of succinic acid using Box-Behnken design approach. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-22807-1
dc.relationUtami, R. R., Jamilah, Wahyudi, R., Tangkin, W. P., Thamrin, I., Amalia, A. N., Indriana, D., Rosniati, Yumas, M., Assa, A., & Ariyanti, M. (2021). Antioxidant activities of cocoa bean shell from North Luwu and Gunungkidul as an active compound of packaging material. IOP Conference Series: Earth and Environmental Science, 743(1). https://doi.org/10.1088/1755-1315/743/1/012021
dc.relationUtami, R. R., Supriyanto, S., Rahardjo, S., & Armunanto, R. (2017). Aktivitas Antioksidan Kulit Biji Kakao dari Hasil Penyangraian Biji Kakao Kering pada Derajat Ringan, Sedang dan Berat. Agritech, 37(1), 89. https://doi.org/10.22146/agritech.10454
dc.relationValadez-Carmona, L., Plazola-Jacinto, C. P., Hernández-Ortega, M., Hernández-Navarro, M. D., Villarreal, F., Necoechea-Mondragón, H., … Ceballos-Reyes, G. (2017). Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science and Emerging Technologies, 41(April), 378–386. https://doi.org/10.1016/j.ifset.2017.04.012
dc.relationValadez-Carmona, Lourdes., Ortiz-Moreno, Alicia., Ceballos-Reyes, G., Mendiola, J. A., & Ibáñez, E. (2018). Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. The Journal of Supercritical Fluids, 131(September 2017), 99–105. https://doi.org/10.1016/j.supflu.2017.09.011
dc.relationValbuena Coca, D. A., & Serrano Acevedo, C. A. (2018). Aprovechamiento De La Cascarilla De Cacao Para La Generación De Un Producto Derivado En La Asociación De Productores Orgánicos Del Municipio De Dibulla (Apomd). Journal of Chemical Information and Modeling, 53(9), 1689-1699.
dc.relationVaštyl, M., Jankovská, Z., Cruz, G. J. F., & Matějová, L. (2022). A case study on microwave pyrolysis of waste tyres and cocoa pod husk; effect on quantity and quality of utilizable products. Journal of Environmental Chemical Engineering, 10(1). https://doi.org/10.1016/j.jece.2021.106917
dc.relationVázquez, A., Ovando, I., Adriano, L., Betancur, D., & Salvador, M. (2016). Alcaloides y polifenoles del cacao, mecanismos que regulan su biosíntesis y sus implicaciones en el sabor y aroma. Archivos Latinoamericanos de Nutricion, 66(3), 239–254.
dc.relationVillamizar Jaimes, Y. L., Rodríguez Guerrero, J. S., & León Castrillo, L. C. (2017). Caracterización fisicoquímica, microbiológica y funcional de harina de cáscara de cacao (Theobroma cacao L.) variedad CCN-51. Cuaderno Activa, 9.
dc.relationVillamizar, R., & López, J. (2017). Cáscara de cacao fuente de polifenoles y fibra : simulación de una planta piloto para su extracción. Respuestas, 22(1), 75–83. Retrieved from https://revistas.ufps.edu.co/index.php/respuestas/article/view/821/1677
dc.relationVriesmann, L. C., Amboni, R. D. M. C., & Petkowicz, C. L. O. (2011). Cacao pod husks (Theobroma cacao L.): Composition and hot-water-soluble pectins. Industrial Crops and Products, 34(1), 1173–1181.
dc.relationXiao, X., Han, L., Shi, B. (2008). Microwave-assisted extraction of flavonoids from Radix Astragal. Separation and Purification Technology, 2008, 62, 614-618.
dc.relationYaakob, M. N. A., Roslan, R., Salim, N., Mustapha, S. N. H., Zakaria, S., Chia, C. H., Sajab, M. S., & Yuh, P. Y. N. (2020). Effect of temperature on the yield of lignin extracted using microwave-assisted acetosolv from empty fruit bunch fibers. En Materials Science Forum: Vol. 981 MSF (pp. 240-244). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.981.240
dc.relationYahya, M., Ginting, B., & Saidi, N. (2021). In-vitro screenings for biological and antioxidant activities of water extract from theobroma cacao l. Pod husk: Potential utilization in foods. Molecules, 26(22). https://doi.org/10.3390/molecules26226915
dc.relationYamagishi, M., Natsume, M., Osakabe, N., Okazaki, K., Furukawa, F., Imazawa, T., Nishikawa, A., & Hirose, M. (2003). Chemoprevention of lung carcinogenesis by cacao liquor proanthocyanidins in a male rat multi-organ carcinogenesis model. Cancer Letters, 191(1). https://doi.org/10.1016/S0304-3835(02)00629-8
dc.relationYapo, B. M., Besson, V., Koubala, B. B., & Koffi, K. L. (2013). Adding Value to Cacao Pod Husks as a Potential Antioxidant-Dietary Fiber Source. American Journal of Food and Nutrition, 1(3), 38–46. https://doi.org/10.12691/ajfn-1-3-4
dc.relationZamora, P. A., & Ochoa, G. L. (2020). Cadena Productiva del Cacao en Colombia. Un análisis del sector con enfoque de cadena.
dc.relationZavala Zavala, L., Castro de la Cruz, Y., Calva Angeles, F., Moralez Cruz, A., Sánchez Mundo, M. de la L., & Chávez Reyes, Y. (2020). Optimización de deshidratación de la semilla de mango con microondas y conservación de los compuestos fenólicos. Revista Mexicana de Agroecosistemas, 7(1).
dc.relationZhang, Y., Li, Q., Xing, H., Lu, X., Zhao, L., Qu, K., & Bi, K. (2013). Evaluation of antioxidant activity of ten compounds in different tea samples by means of an on-line HPLC-DPPH assay. Food Research International, 53(2). https://doi.org/10.1016/j.foodres.2013.03.026
dc.relationYong, S. K., Leyom, J., Tay, C. C., & Talib, S. A. (2018). Sorption of lead from aqueous system using cocoa pod husk biochar: Kinetic and isotherm studies. International Journal of Engineering and Technology (UAE), 7(3), 241–244. https://doi.org/10.14419/ijet.v7i3.11.16017
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleExtracción asistida por microondas de compuestos fenólicos de los subproductos del beneficio del cacao (Theobroma cacao L.)
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución