dc.contributorSimbaqueba Ariza, Axel Danny
dc.contributorPlazas De Pinzón, María Cristina
dc.creatorCastillo Martínez, Andrés Felipe
dc.date.accessioned2023-06-22T19:43:32Z
dc.date.accessioned2023-08-25T12:51:21Z
dc.date.available2023-06-22T19:43:32Z
dc.date.available2023-08-25T12:51:21Z
dc.date.created2023-06-22T19:43:32Z
dc.date.issued2023
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/84055
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8426889
dc.description.abstractEste trabajo surge como continuación de un protocolo de irradiación corporal total (TBI) usando arcoterapia volumétrica de intensidad modulada (VMAT) desarrollado en el Instituto Nacional de Cancerología, debido a que es necesario establecer una metodología para ejecutar un programa de control de calidad de paciente específico y una dosimetría in vivo usando cristales termoluminiscentes (TLD) y diodos. Para ello, se parte desde una descripción detallada de los principios físicos básicos que subyacen cada uno de estos temas para lograr un entendimiento global de los objetivos. Luego, se aplican los protocolos y recomendaciones locales e internacionales para desarrollar las metas establecidas en el proyecto. Esto permitió comparar cualitativa y cuantitativamente los sistemas dosimétricos de estudio, resaltando las ventajas y desventajas que tienen entre si. También se toma en cuenta la importancia de las actividades de gestión de riesgos que puede llevar a cabo la entrega de un tratamiento especializado como es la TBI, evaluando controles de calidad basados en mediciones sobre fantomas que simulan la entrega de dosis y basados en software que determinan la exactitud en el cálculo de dosis del sistema de planeación de tratamiento. (Texto tomado de la fuente).
dc.description.abstractThis work arises as a continuation of a total body irradiation (TBI) protocol using volumetric modulated intensity arc therapy (VMAT) developed at the Instituto Nacional de Cancerología, because it is necessary to establish a methodology to execute a specific patient quality assurance program and in vivo dosimetry using thermoluminescent crystals (TLD) and diodes. To do this, it starts from a detailed description of the basic physical principles that underlie each of these issues to achieve a global understanding of the objectives. Then, local and international protocols and recommendations are applied to develop the goals established in the project. This allowed to qualitatively and quantitatively compare the dosimetric systems that were studied, highlighting the advantages and disadvantages that they have among themselves. The importance of risk management activities that can be carried out by the delivery of a specialized treatment such as TBI is also taken into account, evaluating quality controls based on measurements on phantoms that simulate the delivery of doses and based on software that determine the accuracy of the dose calculation of the treatment planning system.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Física Médica
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationBireme
dc.relationLeo, W. R. (1994). Techniques for Nuclear and Particle Physics Experiments: A How-to Approach. Springer.
dc.relationPodgorsak, E. B. (2018). Radiation Physics for Medical Physicists (3rd ed.). Springer.
dc.relationP. Andreo, D. Burns, A. Nahum, and J. Seuntjens, Fundamentals of Ionizing Radiation Dosimetry: Solutions to the Exercises. Fundamentals of Ionizing Radiation Dosimetry, Wiley, 2017.
dc.relationS. N. Corporation, ISORAD Detector Reference Guide. Sun Nuclear Corporation, 2021.
dc.relationS. N. Corporation, IVD 2 Reference Guide. Sun Nuclear Corporation, 2022.
dc.relationS. Kry, P. Alvarez, J. Cygler, L. DeWerd, R. Howell, S. Meeks, J. O’Daniel, C. Reft, G. Sawakuchi, E. Yukihara, and D. Mihailidis, “Aapm tg 191: Clinical use of luminescent dosimeters: Tlds and oslds,” Medical Physics, vol. 47, 10 2019.
dc.relationR. I. GmbH, Manual TLD Reader - TLD Cube. RadPro International GmbH, 2022.
dc.relationR. I. GmbH, TLD Annealing Oven - TLD Heat. RadPro International GmbH, 2022.
dc.relationR. I. GmbH, TLD Handling Devices. RadPro International GmbH, 2022.
dc.relationI. A. E. A. IAEA., Tecnicas de cuarto de moldes para teleterapia. Manual tecnico practico de radiacion, Organismo Internacional de Energia Atomica, 2004.
dc.relationF. Khan and J. Gibbons, Khan’s the Physics of Radiation Therapy. Ovid mono, Lippincott Williams & Wilkins, 2014.
dc.relationA. Berthelsen, J. Dobbs, E. Kjell´en, T. Landberg, T. M¨oller, P. Nilsson, L. Specht, and A. Wambersie, “What’s new in target volume definition for radiologists in icru report 71? how can the icru volume definitions be integrated in clinical practice?,” Cancer imaging : the official publication of the International Cancer Imaging Society, vol. 7, pp. 104–16, 02 2007.
dc.relationF. Khan, P. Sperduto, and J. Gibbons, Khan’s Treatment Planning in Radiation Oncology: . Wolters Kluwer Health, 2021
dc.relationE. Podgorsak, Radiation Oncology Physics: A Handbook for Teachers and Students, vol. 33. 06 2006.
dc.relationI. Varian Medical Systems, Eclipse Photon and Electron Algorithms Reference Guide. Varian Medical Systems, Inc, 2015.
dc.relationM. A. Morsy, “Left-side breast 3dcrt field-in-field technique planning radiotherapy.”
dc.relationE. Clementel and C. Corning, Patient-Specific Quality Assurance, pp. 449–451. Cham: Springer International Publishing, 2022.
dc.relationD. Low, W. Harms, S. Mutic, and J. Purdy, “Atechnique for the quantitative evaluation of dose distributions,” Phys Med, vol. 25, pp. 656–661, 01 1998.
dc.relationS. N. Corporation, ArcCHECK Reference Guide. Sun Nuclear Corporation, 2022.
dc.relationS. N. Corporation, SunCHECK Patient Reference Guide. Sun Nuclear Corporation, 2021.
dc.relationR. I. GmbH, Thermoluminescent Detectors. RadPro International GmbH, 2022
dc.relationF. Valcarcel, A. Torre, and J. Gayoso, “Total body irradiation in bone marrow transplantation,” Oncologia, vol. 24, pp. 16–28, 01 2001.
dc.relationJ. Y. Wong, A. R. Filippi, B. S. Dabaja, J. Yahalom, and L. Specht, “Total body irradiation: Guidelines from the international lymphoma radiation oncology group (ilrog),” International Journal of Radiation Oncology*Biology*Physics, vol. 101, no. 3, pp. 521– 529, 2018.
dc.relationE. Mu˜noz-Moral, A. Rodr´ıguez-Laguna, and J. A. Jim´enez-Acosta, “Implementation of total body irradiation using vmat,” AIP Conference Proceedings, vol. 2348, no. 1, p. 050029, 2021.
dc.relationDevelopment of Procedures for In Vivo Dosimetry in Radiotherapy. No. 8 in Human Health Reports, Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2013.
dc.relationA. B. Rosenfeld, “Semiconductor detectors in radiation medicine: Radiotherapy and related applications,” in Radiation Detectors for Medical Applications (S. Tavernier, A. Gektin, B. Grinyov, and W. W. Moses, eds.), (Dordrecht), pp. 111–147, Springer Netherlands, 2006.
dc.relationE. Yorke, R. Alecu, L. Ding, D. P. Fontenla, A. Kalend, D. G. L. Kaurin, M. E. Masterson-McGary, G. Marinello, T. Matzen, A. Saini, J. Shi, W. E. Simon, T. C. Zhu, X. R. Zhu, G. Rikner, and G. Nilsson, “Diode in vivo dosimetry for patients receiving external beam radiation therapy,” 2005.
dc.relationR. Pierret, Advanced Semiconductor Fundamentals. Modular series on solid state devices, Prentice Hall, 2003.
dc.relationR. Alecu, M. Alecu, and T. G. Ochran, “A method to improve the effectiveness of diode in vivo dosimetry.,” Medical physics, vol. 25 5, pp. 746–9, 1998.
dc.relationR. Carlson, Y. Sun, and H. Assalit, “Lifetime control in silicon power devices by electron or gamma irradiation,” IEEE Transactions on Electron Devices, vol. 24, no. 8, pp. 1103– 1108, 1977.
dc.relationJ. Shi, W. Simon, L. Ding, and D. Saini, “Important issues regarding diode performance in radiation therapyapplications,” vol. 3, pp. 1710–1713 vol.3, 02 2000.
dc.relationS. C. Klevenhagen, “Temperature response of silicon surface barrier semiconductor detectors operated in the dc–short circuit configuration,” Acta Radiologica: Therapy, Physics, Biology, vol. 12, no. 2, pp. 124–144, 1973. PMID: 4727265.
dc.relationE. Grusell and G. Rikner, “Evaluation of temperature effects in p-type silicon detectors,” Physics in Medicine & Biology, vol. 31, p. 527, may 1986
dc.relationJ. Shi, “Characteristics of the si diode as a radiation detector for the application of in-vivo dosimetry,” 1995.
dc.relationJ. N. Eveling, A. M. Morgan, and W. G. Pitchford, “Commissioning a p-type silicon diode for use in clinical electron beams,” Medical Physics, vol. 26, no. 1, pp. 100–107, 1999.
dc.relationC. B. Saw, J. Shi, and D. H. Hussey, “Energy dependence of a new solid state diode for low energy photon beam dosimetry,” Medical Dosimetry, vol. 23, no. 2, pp. 95–97, 1998
dc.relationD. Georg, B. De Ost, M.-T. Hoornaert, P. Pilette, J. Van Dam, M. Van Dycke, and D. Huyskens, “Build-up modification of commercial diodes for entrance dose measurements in ‘higher energy’ photon beams,” Radiotherapy and Oncology, vol. 51, no. 3, pp. 249–256, 1999.
dc.relationG. Rikner and E. Grusell, “General specifications for silicon semiconductors for use in radiation dosimetry,” Physics in Medicine and Biology, vol. 32, p. 1109, sep 1987.
dc.relationJ. Greig, R. Miller, and P. Okunieff, “An approach to dose measurement for total body irradiation,” International Journal of Radiation Oncology*Biology*Physics, vol. 36, no. 2, pp. 463–468, 1996.
dc.relationP. Almond, P. Biggs, B. Coursey, W. Hanson, M. S. Huq, R. Nath, and D. Rogers, “Aapm’s tg-51 protocol for clinical reference dosimetry of high-energy photon and electron beams,” Medical physics, vol. 26, pp. 1847–70, 10 1999.
dc.relationM. Essers and B. Mijnheer, “In vivo dosimetry during external photon beam radiotherapy,” International Journal of Radiation Oncology*Biology*Physics, vol. 43, no. 2, pp. 245–259, 1999.
dc.relationD. P. Fontenla, R. Yaparpalvi, C.-S. Chui, and E. Briot, “The use of diode dosimetry in quality improvement of patient care in radiation therapy,” Medical Dosimetry, vol. 21, no. 4, pp. 235–241, 1996.
dc.relationT. Kron, “Thermoluminescence dosimetry and its applications in medicine–part 1: Physics, materials and equipment,” Australasian physical &; engineering sciences in medicine, vol. 17, p. 175—199, December 1994.
dc.relationF. Alghurabi, N. Sahib Mohammed, R. Ghafil, R. Gafel, and R. Ghafel, “A literature review on the fluorescence and phosphorescent,” American International Journal of Sciences and Engineering Research, vol. 2, pp. 47–55, 01 2019.
dc.relationJ. Frenkel, “On the transformation of light into heat in solids. i,” Phys. Rev., vol. 37, pp. 17–44, Jan 1931.
dc.relationJ. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors,” Materials Research Bulletin, vol. 5, no. 8, pp. 721–729, 1970.
dc.relationJ. Cameron, “Radiation dosimetry,” Environmental Health Perspectives, vol. 91, pp. 45– 48, 1991
dc.relationA. Pinz´on, “Establecimiento de un protocolo para irradiaci´on corporal total con la t´ecnica de arcoterapia volum´etrica de intensidad modulada,” (Bogota), Universidad Nacional de Colombia, 2021.
dc.relationAccuracy Requirements and Uncertainties in Radiotherapy. No. 31 in Human Health Series, Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2016.
dc.relationJ. Van Dyk, The Modern Technology of Radiation Oncology: A Compendium for Medical Physicists and Radiation Oncologists. No. v. 1 in The Modern Technology of Radiation Oncology: A Compendium for Medical Physicists and Radiation Oncologists, Medical Physics Pub., 1999.
dc.relationC. Hurkmans, P. Remeijer, J. Lebesque, and B. Mijnheer, “Set-up verification using portal imaging; review of current clinical practice,” Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, vol. 58, pp. 105–20, 03 2001.
dc.relationD. White, J. Booz, R. Griffith, J. Spokas, and I. Wilson, “2. basic concepts,” Reports of the International Commission on Radiation Units and Measurements, vol. os-23, no. 1, p. 3–13, 1989d.
dc.relationD. White, J. Buckland-Wright, R. Griffith, L. Rothenberg, C. Showwalter, G. Williams, I. Wilson, and M. Zankl, “4. phantoms in radiotherapy,” Reports of the International Commission on Radiation Units and Measurements, vol. os-25, no. 1, p. 21–25, 1992.
dc.relationCIRS, ATOM Dosimetry Phantoms. CIRS, 2013.
dc.relationT. J. FitzGerald, M. Bishop-Jodoin, D. S. Followill, J. Galvin, M. V. Knopp, J. M. Michalski, M. A. Rosen, J. D. Bradley, L. K. Shankar, F. Laurie, M. G. Cicchetti, J. Moni, C. N. Coleman, J. A. Deye, J. Capala, and B. Vikram, “Imaging and data acquisition in clinical trials for radiation therapy,” 2016.
dc.relationJ. Hsieh and T. Flohr, “Computed tomography recent history and future perspectives,” Journal of Medical Imaging, vol. 8, no. 5, p. 052109, 2021.
dc.relationJ. J. Battista, W. D. Rider, and J. Van Dyk, “Computed tomography for radiotherapy planning,” International Journal of Radiation Oncology*Biology*Physics, vol. 6, no. 1, pp. 99–107, 1980.
dc.relationE. Aird and J. Conway, “Ct simulation for radiotherapy treatment planning,” The British journal of radiology, vol. 75, pp. 937–49, 01 2003
dc.relationG. Ausili C`efaro, D. Genovesi, and C. Perez, Delineating Organs at Risk in Radiation Therapy. 01 2013.
dc.relationN. Burnet, S. Thomas, K. Burton, and S. Jefferies, “Defining the tumour and target volumes for radiotherapy,” Cancer imaging : the official publication of the International Cancer Imaging Society, vol. 4, pp. 153–61, 02 2004.
dc.relationD. Jones, “Icru report 50—prescribing, recording and reporting photon beam therapy,” Medical Physics, vol. 21, no. 6, pp. 833–834, 1994.
dc.relationS. L. Morgan-Fletcher, “Prescribing, recording and reporting photon beam therapy (supplement to icru report 50), icru report 62. icru, pp. ix+52, 1999 (icru bethesda, md) $65.00 isbn 0-913394-61-0,” The British Journal of Radiology, vol. 74, no. 879, pp. 294–294, 2001.
dc.relationR. Gahbauer, T. Landberg, J. Chavaudra, J. Dobbs, N. Gupta, G. Hanks, J.-C. Horiot, K.-A. Johansson, T. M¨oller, N. Suzanne, J. Purdy, I. Santenac, N. Suntharalingam, and H. Svensson, “Report 71,” Journal of the ICRU, vol. 4, pp. NP–NP, 06 2004.
dc.relationJ. C. Stroom and B. J. Heijmen, “Limitations of the planning organ at risk volume (prv) concept,” International Journal of Radiation Oncology, Biology, Physics, vol. 66, pp. 279–286, Sep 2006.
dc.relationN. Hodapp, “[the icru report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (imrt)],” Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al], vol. 188, p. 97—99, January 2012.
dc.relationD. W. O. Rogers, B. A. Faddegon, G. X. Ding, C.-M. Ma, J. We, and T. R. Mackie, “Beam: A monte carlo code to simulate radiotherapy treatment units,” Medical Physics, vol. 22, no. 5, pp. 503–524, 1995.
dc.relationH. D. Basdemir, “Gaussian source beam diffraction by a perfect electromagnetic halfplane,” J. Opt. Soc. Am. A, vol. 37, pp. 930–939, Jun 2020.
dc.relationL. Tillikainen, H. Helminen, T. Torsti, S. Siljam¨aki, J. Alakuijala, J. Pyyry, and W. Ulmer, “A 3d pencil-beam based superposition algorithm for photon dose calculation in heterogeneous media,” Physics in medicine and biology, vol. 53, pp. 3821–39, 08 2008.
dc.relationI. Kawrakow and D. W. O. Rogers, “The egsnrc code system: Monte carlo simulation of electron and photon transport,” tech. rep. Collection / Collection : NRC Publications Archive / Archives des publications du CNRC.
dc.relationE. Soisson, “Imrt/vmat: Theory and definitions.”
dc.relationS. Webb, “The physical basis of imrt and inverse planning.,” The British journal of radiology, vol. 76 910, pp. 678–89, 2003.
dc.relationA. C., A. Simbaqueba, J. Rodr´ıguez, S. Veloza, and J. C., “Estudio preliminar de la aplicaci´on de la t´ecnica vmat en irradiaci´on corporal total: dise˜no de una camilla rotable,” Revista Investigaciones y Aplicaciones Nucleares, 10 2022.
dc.relationG. Krishnan, P. Kurup, M. Venkatraman, M. Manavalan, N. Bhuvaneshwari, and J. Velmurugan, “Patient dose analysis in total body irradiation through in vivo dosimetry,” Journal of medical physics / Association of Medical Physicists of India, vol. 37, pp. 214– 8, 10 2012.
dc.relationR. Patel, A. Warry, D. Eaton, C. Collis, and I. Rosenberg, “In vivo dosimetry for total body irradiation: Five-year results and technique comparison,” Journal of applied clinical medical physics / American College of Medical Physics, vol. 15, p. 4939, 09 2014.
dc.relationE. Veiga, R. Alfonso, and R. Caballero Pinelo, In Vivo Dosimetry in Total Body Irradiation, pp. 61–65. 05 2019.
dc.relationE. R. Zhang-Velten, D. Parsons, P. Lee, E. Chambers, R. Abdulrahman, N. B. Desai, T. Dan, Z. Wardak, R. Timmerman, M. Vusirikala, P. Patel, T. Simms-Waldrip, V. Aquino, A. Koh, J. Tan, Z. Iqbal, Y. Zhang, R. Reynolds, T. Chiu, M. Joo, B. Hrycushko, L. Ouyang, R. Lamphier, Y. Yan, S. B. Jiang, K. A. Kumar, and X. Gu, “Volumetric modulated arc therapy enabled total body irradiation (vmat-tbi): Six-year clinical experience and treatment outcomes,” Transplantation and Cellular Therapy, Official Publication of the American Society for Transplantation and Cellular Therapy, vol. 28, pp. 113.e1–113.e8, Feb 2022.
dc.relationY. Xu, K. Zhang, Z. Liu, B. Liang, X. Ma, W. Ren, K. Men, and J. Dai, “Treatment plan prescreening for patient-specific quality assurance measurements using independent monte carlo dose calculations,” Frontiers in Oncology, vol. 12, 2022.
dc.relationJ. M. Park, J.-i. Kim, S.-Y. Park, D. H. Oh, and S.-T. Kim, “Reliability of the gamma index analysis as a verification method of volumetric modulated arc therapy plans,” Radiation Oncology, vol. 13, p. 175, Sep 2018.
dc.relationG. A. Ezzell, J. W. Burmeister, N. Dogan, T. LoSasso, J. Mechalakos, D. Mihailidis, A. Molineu, J. R. Palta, C. R. Ramsey, B. J. Salter, J. Shi, P. Xia, and N. J. Yue, “Imrt commissioning: Multiple-institution planning and dosimetry Based on TG-119,” Medical Physics, vol. 36, no. 11, pp. 5359–5373, 2009.
dc.relationS. N. Corporation, 3DVH Reference Guide. Sun Nuclear Corporation, 2022.
dc.relationT. Kosaka, J. Takatsu, T. Inoue, N. Hara, T. Mitsuhashi, M. Suzuki, and N. Shikama, “Effective clinical applications of monte carlo-based independent secondary dose verification software for helical tomotherapy,” Phys Med, vol. 104, pp. 112–122, Dec 2022.
dc.relationE. Simiele, L. Skinner, Y. Yang, E. S. Blomain, R. T. Hoppe, S. M. Hiniker, and N. Kovalchuk, “A step toward making vmat tbi more prevalent: Automating the treatment planning process,” Practical Radiation Oncology, vol. 11, pp. 415–423, Sep 2021.
dc.relationJ. R. Teruel, S. Taneja, A. McCarthy, P. Galavis, M. Malin, S. Osterman, N. K. Gerber, D. Barbee, and C. Hitchen, “Robust vmat-based total body irradiation (tbi) treatment planning assisted by eclipse scripting,” International Journal of Radiation Oncology, Biology, Physics, vol. 105, pp. E788–E789, Sep 2019.
dc.relationJ. R. Teruel, S. Taneja, P. E. Galavis, K. S. Osterman, A. McCarthy, M. Malin, N. K. Gerber, C. Hitchen, and D. L. Barbee, “Automatic treatment planning for vmat-based total body irradiation using eclipse scripting,” Journal of Applied Clinical Medical Physics, vol. 22, no. 3, pp. 119–130, 2021.
dc.relationP. H. B. Cardoso, “Development and evaluation of a perpendicular frame-by-frame patient-specific qa method for large vmat fields using the truebeam electronic portal imaging system,” dukespace.lib.duke.edu, 2019.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleControl de calidad de paciente específico y dosimetría in vivo para la técnica TBI/VMAT sobre un simulador físico
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución