dc.contributorColorado Zuluaga, Gabriel Jaime
dc.contributorEcología y Conservación de Fauna y Flora Silvestre
dc.creatorYepes Arcila, Natalia Andrea
dc.date.accessioned2023-08-01T17:03:12Z
dc.date.accessioned2023-08-25T12:49:33Z
dc.date.available2023-08-01T17:03:12Z
dc.date.available2023-08-25T12:49:33Z
dc.date.created2023-08-01T17:03:12Z
dc.date.issued2023-07-29
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/84394
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8426885
dc.description.abstractLa manera en que las especies cercanamente relacionadas segregan su hábitat y los mecanismos que permiten su coexistencia es un problema clave en la ecología de comunidades. Cuando el rango de varias especies se solapa, aquellas que ocupen la misma fracción de un recurso dado deberían diferir en otras dimensiones debido a la complementariedad de nicho o la partición de recursos. En las comunidades de aves, esto ocurre principalmente a través de diferencias en su uso del hábitat. En este trabajo evalué los patrones de segregación de nicho de seis especies de parúlidos Neotropicales (i.e. Cardellina canadensis, Leiothlypis peregrina, Setophaga castanea, S. cerulea, S. fusca y S. pitiayumi) en sistemas agroforestales al norte de la cordillera occidental de Los Andes en el departamento de Antioquia, Colombia. Encontré evidencias de segregación espacial (distribución altitudinal) y alimentaria (distribución vertical, altura y sustrato de alimentación) entre las especies estudiadas que, en conjunto, sugieren patrones de segregación ecológica. El alto grado de solapamiento de nicho en estas mismas variables indica que las interacciones interespecíficas (e.g. competencia) son determinantes para estructurar esta comunidad de parúlidos que coocurren. El gradiente altitudinal (localidad) fue la única de las categorías evaluadas que no presentó solapamiento entre las especies sugiriendo que, de las variables consideradas, esta dimensión espacial puede ser importante para reducir la competencia entre las especies a pesar de sus similitudes ecológicas. (Texto tomado de la fuente)
dc.description.abstractThe way in which closely related species segregate by habitat, and the mechanisms that allow their coexistence, is a central question in community ecology. When the ranges of several species overlap (i.e., they are sympatric), those that use the same food resources should differ in other niche dimensions due to niche complementarity or resource partitioning. In bird communities, this primarily occurs through differences in foraging behavior, diet specialization or composition, and habitat use. In this paper, we evaluated how six species of parulid New World warblers (Cardellina canadensis, Leiothlypis peregrina, Setophaga castanea, Setophaga cerulea, Setophaga fusca, and Setophaga pitiayumi) segregate their ecological niches across an elevational gradient of agroforestry systems in the Western Andes of Colombia. We found evidence of elevational and microhabitat segregation for the six warbler species, suggesting patterns of ecological niche partitioning. High levels of niche overlap among these variables indicated that interspecific interactions (e.g., competition) are key for structuring this co-occurring parulid community. In particular, the warblers exhibited a clear distributional pattern across the elevational gradient. This indicates that elevational segregation might be an important dimension in which these species reduce interspecific competition despite their ecological similarity. Our analysis of multiple niche dimensions (i.e., elevational and microhabitat parameters) revealed differential patterns of habitat use that can suggest niche partitioning in ecologically similar species.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.publisherFacultad de Ciencias Agrarias
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationRedCol
dc.relationLaReferencia
dc.relationAlatalo, R.V. (1982). Multidimensional foraging niche organization of foliage-gleaning birds in northern Finland. Ornis Scandinavica, 13(1), 56-71. https://www.jstor.org/stable/3675974
dc.relationAlatalo, R.V. y Alatalo, R.H. (1979). Resource partitioning among a flycatcher guild in Finland. Oikos, 1, 46-54. https://doi.org/10.2307/3544510
dc.relationAltman, J. (1974). Observational study of behavior: sampling methods. Behaviour, 49, 227-267.
dc.relationAtienzar, F., Belda, E.J. y Barba, E. (2013). Coexistence of Mediterranean tits: a multidimensional approach. Ecoscience, 20, 40-47. http://doi.org/10.2980/20-1-3516
dc.relationBeltzer, A.H., Schnack, J.A., Quiroga, M.A., Ducommun, M.P., Virgolini, A.R. y Alessio, V. (2010). Trophic relationships and mechanisms of ecological segregation among heron species in the Parana River floodplain (Birds: Ardeidae). Nova Science Publishers, Hauppauge, New York, USA, 49-94.
dc.relationBhagwat, S.A., Willis, K.J., Birks, J.B. y Whittaker, R.J. (2008). Agroforestry: a refuge for tropical biodiversity? Trends in ecology & evolution, 23(5), 261-267. https://doi.org/10.1016/j.tree.2008.01.005
dc.relationBhardwaj, M., Uniya, V.P., Sanyal, A.K. y Singh, A.P. (2012). Butterfly communities along an elevational gradient in the Tons valley, Western Himalayas: Implications of rapid assessment for insect conservation. Journal of Asia-Pacific Entomology, 15, 207-217. https://doi.org/10.1016/j.aspen.2011.12.003
dc.relationBrehm, G., Colwell, R.K. y Kluge, J. (2007). The role of environment and mid-domain effect on moth species richness along tropical elevational gradient. Global Ecology and Biogeography, 16(2), 205-219. https://doi.org/10.1111/j.1466-8238.2006.00281.x
dc.relationBuckton, S.T. y Ormerod, S.J. (2002). Global patterns of diversity among the specialist birds of riverine landscapes. Freshwater Biology, 47(4), 695-709. https://doi.org/10.1046/j.1365-2427.2002.00891.x
dc.relationBuckton, S.T. y Ormerod, S.J. (2008). Niche segregation of Himalayan river birds. Journal of Field Ornithology, 79(2), 176-185. https://doi.org/10.1111/j.1557-9263.2008.00160.x
dc.relationChesson, P.L. y Warner, R.R. (1981). Environmental variability promotes coexistence in lottery competitive systems. The American Naturalist, 117(6), 923-943. https://doi.org/10.1086/283778
dc.relationChesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31(1), 343-366. https://doi.org/10.1146/annurev.ecolsys.31.1.343
dc.relationCody, M.L. (1968). On the methods of resource division in grassland bird communities. American Naturalist, 102, 107-147. https://doi.org/ 10.2307/2459081
dc.relationColorado, G.J. (2011). Ecology and conservation of Neotropical-Neartic migratory birds and mixed-species flocks in the Andes [Tesis de doctorado, The Ohio State University].
dc.relationColorado, G.J., Mehlman, D. y Valencia, G. (2016). Effects of floristic and structural features of shade agroforestry plantations on the migratory bird community in Colombia. Agroforestry Systems, 92(3), 677-691. doi:10.1007/s10457-016-0034-9
dc.relationColorado, G.J. y Rodewald, A.D. (2016). Patterns of change in body condition in wintering Neotropical-Neartic migratory birds in shaded plantations in the Andes. Agroforestry Systems, 91, 1129-1137.
dc.relationCraig, R.J. (1987). Divergent prey selection in two species of waterthrushes (Seiurus). The Auk, 104(2), 180-187. https://doi.org/10.1093/auk/104.2.180
dc.relationDavid, S. (2016). Foraging niche structure and coexistence in a highly diverse community of Amazonian antbirds (Thamnophilidae: Aves). [Tesis de maestría, The University of British Columbia]
dc.relationDe Clerck, F. y Negeros-Castilli, P. (2000). Plant species of traditional Mayan home-gardens of Mexico as analogs for mulistrata agroforests. Agroforestry Systems, 48(3), 303-317.
dc.relationDe la Zerda, S. y Stauffer, D. (1998). Habitat selection by Blackburnian Warblers wintering in Colombia. Journal of Field Ornithology, 69:457-465. https://doi.org/10.2307/4514343
dc.relationDouglass, J.G., France, K.E. y Duffy, J.E. (2010). Seasonal and interannual change in a Chesapeake Bay eelgrass community: insights into biotic and abiotic control of community structure. Limnology and Oceanography, 55(4), 1499-1520. https://doi.org/10.4319/lo.2010.55.4.1499
dc.relationEwert, D.N. y Askins, R.A. (1991). Flocking behavior of migratory warblers in winter in Virgin Islands. The Condor, 93(4), 864-868. https://doi.org/10.2307/3247721
dc.relationFreckleton, R. y Harvey, P.H. (2006). Detecting non-brownian trait evolution in adaptive radiations. PLoS Biology, 4(11), 365-373. https://doi.org/10.1371/journal.pbio.0040373
dc.relationFreeman, B.G. y Freeman, A.M.C. (2014). Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proceedings of the National Academy of Sciences, 111(12), 4490-4494. https://doi.org/10.1073/pnas.1318190111
dc.relationGarcía, J.T. y Arroyo, B.E. (2005) Food-niche differentiation in sympatric Hen Circus cyaneus and Montagu’s Harriers Circus pygargus. Ibis, 147, 144-154. https://doi.org/10.1111/j.1474-919x.2004.00377.x
dc.relationGokula, V. y Vijayan, L. (2000). Foraging pattern of birds during the breeding season in thorn forest of Mudumalai wildlife sanctuary, Tamil Nadu, Southern India. Tropical Ecology, 41(2), 195-208.
dc.relationGordon, C.E. (2000). The coexistence of species. Revista Chilena de Historia Natural, 73, 175-198. http://doi.org/10.4067/S0716-078X2000000100016
dc.relationGotelli, N.J., Graves, G.R. y Rahbek, C. (2010). Macroecological signals of species interactions in the Danish avifauna. Proceedings of the National Academy of Sciences, 107(11), 5030-5035. https://doi.org/10.1073/pnas.0914089107
dc.relationGotelli, N.J., Hart, E.M. y Ellison, A.M. (2015). EcoSimR: Null model analysis for ecological data. R package version 0.1.0. https://doi.org/10.5281/zenodo.16522
dc.relationGraves, G.R. (1987). A cryptic new species of antpitta (Formicariidae: Grallaria) from the Peruvian Andes. The Wilson Bulletin, 99(3), 313-321.
dc.relationGreenberg, R., Bichier, P. y Sterling, J. (1997). Bird populations in rustic and planted shade coffee plantations of eastern Chiapas, Mexico. Biotropica, 29(4), 501-514. https://doi.org/10.1111/j.1744-7429.1997.tb00044.x
dc.relationHamer, K.C., Newton, R.J., Edwards, F.A., Benedick, S., Bottrell, S.H. y Edwards, D.P. (2015). Impacts of selective logging on insectivorous birds in Borneo: the importance of trophic position, body size and foraging height. Biological Conservation, 188, 82-88. https://doi.org/10.1016/j.biocon.2014.09.026
dc.relationHammer, Ø., Harper, D.A. y Ryan, P.D. (2020). PAST: Paleontological Statistics software package for education and data analysis. (Versión 4.02). Windows. Palentología Electrónica.
dc.relationHart, P.J.B. (2003). Habitat use and feeding behavior in two closely related fish species, the three-spined and nine-spined stickleback: an experimental analysis. Journal of Animal Ecology, 72, 777-783. https://doi.org/10.1046/j.1365-2656.2003.00747.x
dc.relationHarvey, C.A. y Villalobos, J.A.G. (2007). Agroforestry systems conserve species-rich modified assemblages of tropical birds and bats. Biodiversity and Conservation, 16(8), 2257-2292.
dc.relationHolm, E. y Edney, E.B. (1973). Daily activity of Namib Desert arthropods in relation to climate. Ecology, 54, 45-56. https://doi.org/10.2307/1934373
dc.relationHsieh, F. y Chen, C.C. (2011). Does niche-overlap facilitate mixed-species flocking in birds?. Journal of Ornithology, 152(4), 955. https://doi.org/10.1007/s10336-011-0678-1
dc.relationHutchinson, G.E. (1959). Homage to Santa Rosalia, or why are there so many different kinds of animals? The American Naturalist, 93, 145-159. https://doi.org/10.2307/2458768
dc.relationHutchinson, G.E. (1961). The paradox of the plankton. The American Naturalist, 95(882), 137-145. https://doi.org/10.2307/2458386
dc.relationJohansson, F. y Brodin, T. (2003). Effects of fish predators and abiotic factors on dragonfly community structure. Journal of Freshwater Ecology, 18(3), 415-423. https://doi.org/10.1080/02705060.2003.9663977
dc.relationKovach, W.L. (2013). MVSP-A Multivariate Statistical Package (Versión 3.22). Windows. Wales: Kovach Computing Services.
dc.relationKrebs, C.J. (1989). Ecological methodology. Harper and Row, New York, USA.
dc.relationLabropoulou, M. y Eleftheriou, A. (2005). The foraging ecology of two pairs of congeneric demersal fish species: importance of morphological characteristics in prey selection. Journal of Fish Biology, 50(2), 324-340. https://doi.org/10.1111/j.1095-8649.1997.tb01361.x
dc.relationLangkilde, T. y Shine, R. (2004). Competing for crevices: interspecific conflict influences retreat-site selection in montane lizards. Oecologia 140, 684-691. https://doi.org/10.1007/s00442-004-1640-1
dc.relationLara, C., Martínez-García, V., Ortiz-Pulido, R., Bravo-Cadena, J., Loranca, S. y Córdoba-Aguilar, A. (2011). Temporal-spatial segregation among hummingbirds foraging on honeydew in a temperate forest in Mexico. Current Zoology, 57(1), 56-62. https://doi.org/10.1093/czoolo/57.1.56
dc.relationLevine, J.M. y HilleRisLambers, J. (2009). The importance of niches for the maintenance of species diversity. Nature, 461, 254-257.
dc.relationLoyn, R.H. (2002). Patterns of ecological segregation among forest and woodland birds in south-eastern Australia. Ornithological Science, 1(1), 7-27. https://doi.org/10.2326/osj.1.7
dc.relationLovette, I.J. y Hochanchka, W.M. (2006). Simultaneous effects of phylogenetic niche conservatism and competition on avian community structure. Ecology, 87(7), S14-S28. https://doi.org/10.1890/0012-9658(2006)87[14:SEOPNC]2.0.CO;2
dc.relationLovette, I.J., Pérez-Emán, J.L., Sullivan, J.P., Banks, R.C., Fiorentino, I., Córdoba-Córdoba, S., Echeverry-Galvis, M., Barker, F.K., Burns, K.J., Klicka, J., Lanyon, S.M. y Bermingham, E. (2010). A comprehensive multilocus phylogeny for the wood-warblers and a revised classification of the Parulidae (Aves). Molecular phylogenetics and evolution, 57(2), 753-770. https://doi.org/10.1016/j.ympev.2010.07.018
dc.relationMacArthur, R.H. (1958). Population ecology of some warblers of northeastern coniferous forests. Ecology, 39(4), 599-619. https://doi.org/10.2307/1931600
dc.relationMacArthur, R.H. (1972). Geographical ecology. Patterns in the distribution of species. Princeton University Press, Princeton.
dc.relationMacArthur, R.H. y Levins, R. (1964). Competition, hábitat selection and carácter displacement in a patchy environment. Proceedings of the National Academy of Sciences, 51, 1207-1210. https://doi.org/10.1073/pnas.51.6.1207
dc.relationMansor, M.S. y Mohd Sah, S.A. (2012). Foraging patterns reveal niche separation in tropical insectivorous birds. Acta Ornithologica, 47, 27-36. https://doi.org/ 10.3161/000164512X653890
dc.relationMansor, M.S. y Ramli, R. (2017). Foraging niche segregation in Malaysian babblers (Family: Timaliidae). PloS one, 12(3). 10.1371/journal.pone.0172836
dc.relationMcCoy, E.D. (1990). The distribution of insects along elevational gradients. Oikos, 58(3), 313-322.
dc.relationMiles, D.B. y Ricklefs, R.E. (1984). The correlation between ecology and morphology in deciduous forest passerine birds. Ecology, 9, 520-528. https://doi.org/10.2307/1939141
dc.relationMuñoz, J.M. y Colorado, G.J. (2012). Foraging ecology of the Cerulean Warbler (Setophaga cerulea) in Andean agroforestry ecosystems. Ornitologia Neotropical, 23, 359-366.
dc.relationNavarro, J., Votier, S.C., Aguzzi, J., Chiesa, J.J., Forero, M.G. y Phillips, R.A. (2013). Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PloS One, 8(4), e62897. https://doi.org/10.1371/journal.pone.0062897
dc.relationNewell, F.L., Beachy, T.A., Rodewald, A.D., Rengifo, C.G., Ausprey, I.J. y Rodewald, P.G. (2014). Foraging behavior of migrant warblers in mixed‐species flocks in Venezuelan shade coffee: interspecific differences, tree species selection, and effects of drought. Journal of Field Ornithology, 85(2), 134-151. https://doi.org/10.1111/jofo.12056
dc.relationNorris, D.R., Marra, P.P., Kyser, T.K., Sherry, T.W. y Ratcliffe, L.M. (2004). Tropical Winter hábitats limits reproductive success on the temperate breeding grounds in a migratory bird. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1534), 59-64. https://doi.org/10.1098/rspb.2003.2569
dc.relationNudds, T.D. y Bowlby, J.N. (1984). Predator-prey size relationships in North American dabbling ducks. Canadian Journal of Zoology, 63, 2002-2008. https://doi.org/10.1139/z84-293
dc.relationPaiva, V.H., Geraldes, P., Ramírez, I., Meirinho, A., Garthe, S. y Ramos, J.A. (2010). Oceanographic characteristics of areas used by Cory’s Shearwaters during short and long foraging trips in the North Atlantic. Marine Biology, 157:1385-1399.
dc.relationPaiva, V.H., Geraldes, P., Marques, V., Rodríguez, R., Garthe, S. y Ramos, J.A. (2013). Effects of environmental variability on different trophic levels of the North Atlantic food web. Marine Ecology Progress Series, 477, 15-28. https://doi.org/ 10.3354/meps10180
dc.relationPerfecto, I., Rice, R.A., Greenberg, R. y Van der Voort, M.E. (1996). Shade coffee: a disappearing refuge for biodiversity: shade coffee plantations can contain as much biodiversity as forest habitats. BioScience, 46(8), 598-608. https://doi.org/10.2307/1312989
dc.relationPetit, D.R., Lynch, J.F., Hutto, R.L. y Blake, J.G. (1995). Habitat Use And Conservation In The Neotropics. En T.E. Martin y D.M. Finch (Ed.), Ecology and management of Neotropical migratory birds: a synthesis and review of critical issues (pp. 145-197). Oxford University Press.
dc.relationPetit, L.J. y Petit, D.R. (2003). Evaluating the importance of human‐modified lands for Neotropical bird conservation. Conservation biology, 17(3), 687-694. https://doi.org/10.1046/j.1523-1739.2003.00124.x
dc.relationPianka, E.R. (1973). The structure of lizard communities. Annual Review of Ecology and Systematics, 4, 53-74. https://doi.org/10.1146/annurev.es.04.110173.000413
dc.relationR Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
dc.relationRabosky, D.L. y Lovette, I.J. (2008). Density-dependent diversification in North American wood warblers. Proceedings of the Royal Society, 275(1649), 2363-2371. https://doi.org/10.1098/rspb.2008.0630
dc.relationRandin, C.F., Engler, R., Normand, S., Zappa, M., Zimmermann, N.E., Pearman, P.B., Vittoz, P., Thuiller, W. y Guisan, A. (2009). Climate change and plant distribution: local models predict high‐elevation persistence. Global Change Biology, 15(6), 1557-1569. https://doi.org/10.1111/j.1365-2486.2008.01766.x
dc.relationRemsen, J.V. y Robinson, S.K. (1990). A classification scheme for foraging behavior of birds in terrestrial habitats. Studies in Avian Biology, 13, 144-160.
dc.relationRobertson, O.J., McAlpine, C., House, A. y Maron, M. Influence of interspecific competition and landscape structure on spatial homogenization of avian assemblages. PloS One, 28, 8(5), e65299. https://doi.org/10.1371/journal.pone.0065299
dc.relationRobinson, S.K. y Holmes, R.T. (1982). Foraging behavior of forest birds: the relationship among search tactics, diet and habitat structure. Ecology, 63, 1918-1931. https://doi.org/ 10.2307/1940130
dc.relationSæther, B.E. (1983). Habitat selection, foraging niches and horizontal spacing of Willow Warbler Phylloscopus trochilus and Chiffchaff P. collybita in an area of sympatry. Ibis, 125, 24-32. 10.1111/j.1474-919X.1983.tb03080.x
dc.relationSalewski, V., Bairlein, F. y Leisler, B. (2003). Niche partitioning of two Paleartic passerine migrants with Afrotropical residents in their West African winter quarters. Behavioral Ecology, 14(4), 493-502. https://doi.org/10.1093/beheco/arg021
dc.relationSalewski, V., Almasi, B., Heuman, A., Thoma, M. y Schlageter, A. (2007). Agonistic behaviour of Palaearctic passerine migrants at a stopover site suggests interference competition. Ostrich-Journal of African Ornithology, 78(2), 349-355. https://doi.org/10.2989/OSTRICH.2007.78.2.37.117
dc.relationSchall, R. (1991). Estimation in generalized linear models with random effects. Biometrika, 78, 4, 719-727. https://doi.org/10.2307/2336923
dc.relationSchuett, G.W. Hardy, D.L., Greene, H.W., Earley, R.L., Grober, M.S., Van Kirk, E.A. y Murdoch, W.J. (2005). Sympatric rattlesnakes with contrasting mating systems show differences in seasonal patterns of plasma sex steroids. Animal Behaviour 70(2), 257-266. https://doi.org/10.1016/j.anbehav.2004.09.028
dc.relationSchoener, T.W. (1974). Resource partitioning in ecological communities. Science, 185, 27-39. http://doi.org/10.2307/1738612
dc.relationSexton, J.P., McIntyre, P.J., Angert, A.L. y Rice, K.J. (2009). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution and Systematics, 40, 415-436. https://doi.org/10.1146/annurev.ecolsys.110308.120317
dc.relationSmith, O. y Wassmer, T. (2016). An ethogram of commonly observed behaviors of the endangered Bridled White-eye (Zosterops conspicillatus) in a Zoo Setting. The Wilson Journal of Ornithology, 128(3), 647-653. https://doi.org/10.1676/1559-4491-128.3.647
dc.relationSodhi, N.S. y Paszkowski, C.A. (1995). Habitat Use and Foraging Behavior of Four Parulid Warblers in a Second-Growth Forest. Journal of Field Ornithology, 66(2), 277-288. https://www.jstor.org/stable/4514017
dc.relationSPSS Inc. (2017). SPSS Statistics (Version 25.0). Windows. Chicago: SPSS Inc.
dc.relationStenchly, K., Clough, Y., Tscharntke, T. (2012). Spider species richness in cocoa agroforestry systems, comparing vertical strata, local management and distance to forest. Agriculture, Ecosystems and Environment, 149, 189-194. https://doi.org/10.1016/j.agee.2011.03.021
dc.relationTilman, D. (1982). Resource competition and community structure. Princeton university press.
dc.relationVieira, E.M. y Port, D. (2007). Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. Journal of Zoology, 272, 57-63. https://doi.org/10.1111/j.1469-7998.2006.00237.x
dc.relationWebb, C.O., Ackerly, D.D., McPeek, M.A. y Donoghue, M.J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
dc.relationWelsh, D.A. y Logheed, S.C. (1996). Relationships of bird community structure and species distribution to two environmental gradients in the northern boreal forest. Ecography, 19(2), 194-208. https://doi.org/10.1111/j.1600-0587.1996.tb00168.x
dc.relationWereszczuk, A. y Zalewski, A. (2015) Spatial niche segregation of sympatric Stone Marten and Pine Marten. Avoidance of competition or selection of optimal habitat? PloS One, 10(10), e0139852. https://doi.org/ 10.1371/journal.pone.0139852
dc.relationWesolowski, T. (2003). Bird community dynamics in a primaveral forest-is interspecific competition important. Ornis Hungarica, 12(13), 51-62.
dc.relationWilliams, W.T., Kikkawa, J. y Morris, D.K. (1972). A numerical study of agonistic behaviour in the greybreasted silvereye (Zosterops lateralis). Animal Behaviour, 20(1), 155-165. https://doi.org/10.1016/S0003-3472(72)80186-6
dc.relationWillis, E. O. (1980). Ecological roles of migratory and resident birds on Barro Colorado Island, Panama. En A. Keast y E.S. Morton (Ed.), Migrant birds in the Neotropics: ecology, behavior, distribution and conservation (pp. 205-225). Smithsonian Institution Press.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleSegregación ecológica de reinitas (Aves: Parulidae) en sistemas agroforestales
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución