JOURNAL OF FUNCTIONAL ANALYSIS

dc.creatorCorrea-Fontecilla, Rafael
dc.creatorHantoute, Abderrahim
dc.creatorLópez-Cerda, Marco Antonio
dc.date2021-08-23T22:52:43Z
dc.date2022-07-08T20:34:37Z
dc.date2021-08-23T22:52:43Z
dc.date2022-07-08T20:34:37Z
dc.date2016
dc.date.accessioned2023-08-23T00:13:59Z
dc.date.available2023-08-23T00:13:59Z
dc.identifier1150909
dc.identifier1150909
dc.identifierhttps://hdl.handle.net/10533/251024
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8354318
dc.descriptionIn this paper we establish new rules for the calculus of the subdifferential mapping of the sum of two convex functions. Our results are established under conditions which are at an intermediate level of generality among those leading to the Hiriart-Urruty and Phelps formula (Hiriart-Urruty and Phelps, 1993 [15]), involving the approximate subdifferential, and the stronger assumption used in the well-known Moreau-Rockafellar formula (Rockafellar 1970, [23]; Moreau 1966, [20]), which only uses the exact subdifferential. We give an application to derive asymptotic optimality conditions for convex optimization. (C) 2016 Elsevier Inc. All rights reserved.
dc.descriptionRegular 2015
dc.descriptionFONDECYT
dc.descriptionFONDECYT
dc.languageeng
dc.relationhandle/10533/111557
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.relationhttps://doi.org/10.1016/j.jfa.2016.05.012
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleWeaker conditions for subdifferential calculus of convex functions
dc.titleJOURNAL OF FUNCTIONAL ANALYSIS
dc.typeArticulo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución