dc.creatorAravire-Flores, Rodrigo Arturo
dc.date2018-08-23T18:22:03Z
dc.date2022-06-18T21:45:16Z
dc.date2018-08-23T18:22:03Z
dc.date2022-06-18T21:45:16Z
dc.date2013-08-03
dc.date2013
dc.date2013-07-31
dc.date.accessioned2023-08-22T23:16:22Z
dc.date.available2023-08-22T23:16:22Z
dc.identifier1130796
dc.identifierhttps://hdl.handle.net/10533/219521
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8350444
dc.descriptionLet F be a eld of characteristic 2. For a quadratic form over F, let F( ) denote the function eld of the projective quadric given by . If B is a bilinear form over F, we denote by F(B) the function eld of the projective quadric given by the diagonal quadratic form associated to B. For any eld extension K=F, there exists two homomorphisms iK : Wq(F) �����! Wq(K) and jK : W(F) �����! W(K) induced by the inclusion F K. A natural problem in the algebraic theory of quadratic (bilinear) forms consists in computing the kernels of iK and jK, i.e., classifying quadratic forms over F which become hyperbolic over K (resp. bilinear forms over F which become metabolic over K). In general, for an arbitrary eld extension K, it is di¢ cult to compute the kernels of iK and jK. The case of an extension given by the function eld of a quadric arouses a lot of interest, and many results are proven in this case, but we are far from a complete computation of the kernel of iF( ) for an arbitrary quadratic (bilinear) form . In this talk, we consider the kernel for graded Witt groups, namely the kernel of the homo- morphism fnK : In q F=In+1 q F �����! In q F( )=In+1 q F( ), where In q F = InF Wq(F) and InF is the nth power of the fundamental ideal IF of W(F), for a quadratic form of small dimension. So the rst open case to treat is when is a nonsingular quadratic form of dimension 4 and nontrivial Arf invariant, namely, = [1; a] ? b[1; c] such that a + c 62 }(F) := fx2 ����� x j x 2 Fg. References [A-B] R. Aravire, R. Baeza, The behavior of quadratic and di¤erential forms under function eld extensions in characteristic two, J. Algebra 259 (2003), 361 414. [A-J] R. Aravire, B. Jacob, H1(X; ) of conics and Witt kernels in characteristic 2, Contemp. Math. 493 (2009), 1 19. [H-L] D. Ho¤mann, A. Laghribi, Quadratic forms and P ster neighbors in characteristic 2, Trans. Amer. Math. Soc. 356 (2004), 4019 4053. [L] A. Laghribi, Witt kernels of function eld extensions in characteristic 2. J. Pure Appl. Algebra 199 (2005), 167-182.
dc.languageeng
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.relationCongreso de Matemáticas Capricornio COMCA
dc.relation22
dc.relationinfo:eu-repo/grantAgreement//1130796
dc.relationinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93486
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleQuadratic Forms of small dimension
dc.typePonencia
dc.typeinfo:eu-repo/semantics/lecture
dc.coverageLa Serena


Este ítem pertenece a la siguiente institución