JOURNAL OF DIFFERENTIAL EQUATIONS

dc.creatorTrofimchuk, Elena
dc.creatorPinto, Manuel
dc.creatorTrofimchuk, Sergei
dc.date2021-08-23T22:48:46Z
dc.date2022-07-08T20:19:55Z
dc.date2021-08-23T22:48:46Z
dc.date2022-07-08T20:19:55Z
dc.date2016
dc.date.accessioned2023-08-22T11:30:20Z
dc.date.available2023-08-22T11:30:20Z
dc.identifier1150480
dc.identifier1150480
dc.identifierhttps://hdl.handle.net/10533/250213
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8344342
dc.descriptionWe propose a new approach for proving existence of monotone wavefronts in non-monotone and non local monostable diffusive equations. This allows to extend recent results established for the particular case of equations with local delayed reaction. In addition, we demonstrate the uniqueness (modulo translations) of obtained monotone wavefront within the class of all monotone wavefronts (such a kind of conditional uniqueness was recently established for the non-local KPP-Fisher equation by Fang and Zhao). Moreover, we show that if delayed reaction is local then each monotone wavefront is unique (modulo translations) within the class of all non-constant traveling waves. Our approach is based on the construction of suitable fundamental solutions for linear integral-differential equations. We consider two alternative scenarios: in the first one, the fundamental solution is negative (typically holds for the Mackey-Glass diffusive equations) while in the second one, the fundamental solution is non-negative (typically holds for the KPP-Fisher diffusive equations). (C) 2016 Elsevier Inc. All rights reserved.
dc.descriptionRegular 2015
dc.descriptionFONDECYT
dc.descriptionFONDECYT
dc.languageeng
dc.relationhandle/10533/111557
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.relationhttps://doi.org/10.1016/j.jde.2016.03.039
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleMonotone waves for non-monotone and non-local monostable reaction-diffusion equations
dc.titleJOURNAL OF DIFFERENTIAL EQUATIONS
dc.typeArticulo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución