Flexibility in the mineral dependent metabolism of a thermoacidophilic crenarchaeote

dc.contributorBoyd, Eric
dc.contributorMONTANA STATE UNIVERSITY
dc.creatorAmenabar Barriuso, Maximiliano Jose
dc.date2018-08-13T20:00:23Z
dc.date2022-08-19T00:15:45Z
dc.date2018-08-13T20:00:23Z
dc.date2022-08-19T00:15:45Z
dc.dateinfo:eu-repo/date/embargoEnd/2018-09-12
dc.date2017
dc.date.accessioned2023-08-22T10:59:42Z
dc.date.available2023-08-22T10:59:42Z
dc.identifier72130442
dc.identifierhttps://hdl.handle.net/10533/219353
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8342213
dc.descriptionThis dissertation focuses on understanding the metabolic flexibility of a thermoacidophilic crenarchaeote, the mechanisms underlying its physiology, and the consequences for its ecology. Acidianus strain DS80 was isolated from an acidic spring in Yellowstone National Park (YNP) and displays versatility in energy metabolism, using soluble and insoluble substrates during chemolithoautotrophic, chemoheterotrophic, and/or chemolithoheterotrophic growth, and is widely distributed among YNP springs. This flexibility suggests that strain DS80 is of utility as a model thermoacidophile that allows investigation towards how metabolically flexible microorganisms select among available substrates and how these traits influence their natural distributions. Moreover, this plasticity allows investigation of the agreement between thermodynamic metabolic predictions and physiological measurements. Here, I showed that strain DS80 prefers growth with redox couples that provide less energy (H2/S°) when compared to other redox couples (H2/Fe3+ or S°/Fe3+). I present a bioenergetic-physiological argument for this preference, suggesting that the preferential use of substrates in metabolically versatile strains, such as strain DS80, is dictated by differences in the energy demand of electron transfer reactions rather than the energy supply. These observations may help explain why thermodynamic approaches alone are often not enough to accurately predict the distribution and activity of microorganisms in environments. I then showed that genome-guided predictions of energy and carbon metabolism of organisms may not agree with physiological observations in the laboratory, and by extension, the environment. Using a suite of physiological experiments, I provide evidence that the availability of electron acceptors influences the spectrum of potential electron donors and carbon sources that can sustain growth. Similarly, the availability of H2 enables the use of organic carbon sources in DS80 cells respiring S°, thereby expanding the ecological niche of this organism by allowing them to compete for a wider array of substrates that are available in dynamic environments. Finally, I showed that strain DS80 can use several minerals for chemolithotrophy and that the use of specific metabolisms dictates the requirement for direct access to these minerals. Taken together, the results shown here provide novel insight into the extent and mechanisms of metabolic flexibility of chemolithotrophs and the consequences for their ecology.
dc.descriptionPFCHA-Becas
dc.descriptionDebido a que no todos los capitulos de mi tesis se encrontaban publicados en ese momento.
dc.descriptionPFCHA-Becas
dc.formatapplication/pdf
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.relationinfo:eu-repo/grantAgreement//72130442
dc.relationinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93488
dc.relationhttps://search.proquest.com/docview/1978961782/3D57D993646E4A07PQ/1?accountid=28148
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCiencias Naturales
dc.subjectCiencias de la Tierra y del Medio Ambiente
dc.subjectMicrobiología
dc.titleFlexibility in the mineral dependent metabolism of a thermoacidophilic crenarchaeote
dc.titleFlexibility in the mineral dependent metabolism of a thermoacidophilic crenarchaeote
dc.typeTesis Doctorado
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeTesis


Este ítem pertenece a la siguiente institución