JOURNAL OF PHYSICAL CHEMISTRY B

dc.creatorAraya-Hermosilla, Esteban
dc.creatorCatalán-Toledo, José
dc.creatorMuñoz-Suescun, Fabian
dc.creatorOyarzún-Ampuero, Felipe
dc.creatorRaffa, Patrizio
dc.creatorPolgar, Lorenzo Massimo
dc.creatorPicchioni, Francesco
dc.creatorMoreno-Villoslada, Ignacio
dc.date2021-08-23T22:52:37Z
dc.date2022-07-08T20:34:14Z
dc.date2021-08-23T22:52:37Z
dc.date2022-07-08T20:34:14Z
dc.date2018
dc.date.accessioned2023-08-22T09:22:19Z
dc.date.available2023-08-22T09:22:19Z
dc.identifier1150899
dc.identifier1150899
dc.identifierhttps://hdl.handle.net/10533/251006
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8336095
dc.descriptionAmphiphilic aromatic polymers have been synthesized by grafting aliphatic polyketones with 4-(aminomethyl)benzoic acid at different molar ratios via the PaalKnorr reaction. The resulting polymers, showing diketone conversion degree of 16%, 37%, 53%, and 69%, have been complexed with the redox-active 2,3,5-triphenyl-2H-tetrazolium chloride, a precursor molecule with which aromaticaromatic interactions are held. Upon addition of ascorbic acid to the complexes, in situ reduction of the tetrazolium salt produced 1,3,5-triphenylformazan nanoparticles stabilized by the amphiphilic polymers. The stabilized nanoparticles display highly negative zeta potential [-(35-70) mV] and hydrodynamic diameters in the submicron range (100-400 nm). Nonaromatic polyelectrolytes or hydrophilic aromatic copolymers showing low linear aromatic density and high linear charge density such as acrylate/maleate and sulfonate/maleate-containing polymers were unable to stabilize formazan nanoparticles synthesized by the same method. The copolymers studied here bear uncharged nonaromatic comonomers (unreacted diketone units) as well as charged aromatic comonomers, which furnish amphiphilia. Thus, the linear aromatic density and the maximum linear charge density have the same value for each copolymer, and the hydrophilic/hydrophobic balance varies with the diketone conversion degree. The amphiphilia of the copolymers allows the stabilization of the nanoparticles, even with the copolymers showing a low linear aromatic density. The method of nanoparticle synthesis constitutes a simple, cheap, and green method for the production of switchable totally organic, redox-active, pH-sensitive nanoparticles that can be reversibly turned into macroprecipitates upon pH changing.Keywords KeyWords Plus:STIMULI-RESPONSIVE NANOPARTICLES; HYDROGEN-BONDING INTERACTIONS; POLY(SODIUM 4-STYRENE-SULFONATE); 2,3,5-TRIPHENYL-2H-TETRAZOLIUM CHLORIDE; PI-STACKING; RHODAMINE 6G; AGGREGATION; POLYELECTROLYTES; REDUCTION; 5,10,15,20-TETRAKIS-(4-SULFONATOPHENYL)-PORPHYRIN
dc.descriptionRegular 2015
dc.descriptionFONDECYT
dc.descriptionFONDECYT
dc.languageeng
dc.relationhandle/10533/111557
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.relationhttps://doi.org/10.1021/acs.jpcb.7b11254
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleTotally Organic Redox-Active pH-Sensitive Nanoparticles Stabilized by Amphiphilic Aromatic Polyketones
dc.titleJOURNAL OF PHYSICAL CHEMISTRY B
dc.typeArticulo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución