Polynomial viscosity methods for multispecies kinematic flow models
Numerical Methods for Partial Differential Equations
dc.creator | Bürger, R. | |
dc.creator | Mulet, P. | |
dc.creator | Rubio, L. | |
dc.date | 2020-03-11T20:33:20Z | |
dc.date | 2022-07-08T17:02:43Z | |
dc.date | 2020-03-11T20:33:20Z | |
dc.date | 2022-07-08T17:02:43Z | |
dc.date | 2016 | |
dc.date.accessioned | 2023-08-22T08:42:55Z | |
dc.date.available | 2023-08-22T08:42:55Z | |
dc.identifier | 15130015 | |
dc.identifier | 15130015 | |
dc.identifier | https://hdl.handle.net/10533/239968 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8334572 | |
dc.description | Multispecies kinematic flow models are defined by systems of strongly coupled, nonlinear first‐order conservation laws. They arise in various applications including sedimentation of polydisperse suspensions and multiclass vehicular traffic. Their numerica | |
dc.description | FONDAP | |
dc.description | FONDAP | |
dc.language | eng | |
dc.relation | https://doi.org/10.1002/num.22051 | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Chile | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Polynomial viscosity methods for multispecies kinematic flow models | |
dc.title | Numerical Methods for Partial Differential Equations | |
dc.type | Articulo | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion |