Numerical Methods for Partial Differential Equations

dc.creatorBürger, R.
dc.creatorMulet, P.
dc.creatorRubio, L.
dc.date2020-03-11T20:33:20Z
dc.date2022-07-08T17:02:43Z
dc.date2020-03-11T20:33:20Z
dc.date2022-07-08T17:02:43Z
dc.date2016
dc.date.accessioned2023-08-22T08:42:55Z
dc.date.available2023-08-22T08:42:55Z
dc.identifier15130015
dc.identifier15130015
dc.identifierhttps://hdl.handle.net/10533/239968
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8334572
dc.descriptionMultispecies kinematic flow models are defined by systems of strongly coupled, nonlinear first‐order conservation laws. They arise in various applications including sedimentation of polydisperse suspensions and multiclass vehicular traffic. Their numerica
dc.descriptionFONDAP
dc.descriptionFONDAP
dc.languageeng
dc.relationhttps://doi.org/10.1002/num.22051
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titlePolynomial viscosity methods for multispecies kinematic flow models
dc.titleNumerical Methods for Partial Differential Equations
dc.typeArticulo
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución