Journal of Symbolic Computation

dc.creatorHidalgo-Ortega, Rubén Antonio
dc.creatorJohnson, Pilar
dc.date2021-08-23T22:55:13Z
dc.date2022-07-07T02:31:29Z
dc.date2021-08-23T22:55:13Z
dc.date2022-07-07T02:31:29Z
dc.date2015
dc.date.accessioned2023-08-22T06:44:05Z
dc.date.available2023-08-22T06:44:05Z
dc.identifier1150003
dc.identifier1150003
dc.identifierhttps://hdl.handle.net/10533/251582
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8329032
dc.descriptionA generalized Fermat curve of type (k, 3), where k >= 2, is a closed Riemann surface admitting a group H congruent to Z(k)(3) as a group of conformal automorphisms so that the quotient orbifold S / H is the Riemann sphere and it has exactly 4 cone points, each one of order k. Every genus one Riemann surface is a generalized Fermat curve of type (2, 3) and, if k >= 3, then a generalized Fermat curve of type (k, 3) is non-hyperelliptic. For each generalized Fermat curve, we compute its field of moduli and note that it is a field of definition. Moreover, for k = e(2i pi/P), where p >= 5 is a prime integer, we produce explicit algebraic models over the corresponding field of moduli. As a byproduct, we observe that the absolute Galois group Gal((Q) over bar /Q) acts faithfully at the level of non-hyperelliptic dessins d'enfants. This last fact was already known for dessins of genus 0, 1 and for hyperelliptic ones, but it seems that the non-hyperelliptic situation is not explicitly given in the existent literature. (C) 2014 Elsevier Ltd. All rights reserved.
dc.descriptionRegular 2015
dc.descriptionFONDECYT
dc.descriptionFONDECYT
dc.languageeng
dc.relationhandle/10533/111557
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.relationhttps://doi.org/10.1016/j.jsc.2014.09.042
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleField of moduli of generalized Fermat curves of type (k, 3) with an application to non-hyperelliptic dessins d'enfants
dc.titleJournal of Symbolic Computation
dc.typeArticulo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución