Constructive Approximation

dc.creatorFigueroa-Candia, Leonardo Enrique
dc.date2018-07-30T14:57:36Z
dc.date2022-07-07T15:05:52Z
dc.date2018-07-30T14:57:36Z
dc.date2022-07-07T15:05:52Z
dc.date2017
dc.date.accessioned2023-08-22T06:30:16Z
dc.date.available2023-08-22T06:30:16Z
dc.identifier1130923
dc.identifier1130923
dc.identifierhttps://hdl.handle.net/10533/219068
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8328138
dc.descriptionWe study approximation properties of weighted -orthogonal projectors onto the space of polynomials of degree less than or equal to N on the unit disk where the weight is of the generalized Gegenbauer form . The approximation properties are measured in Sobolev-type norms involving canonical weak derivatives, all measured in the same weighted norm. Our basic tool consists in the analysis of orthogonal expansions with respect to Zernike polynomials. The sharpness of the main result is proved in some cases. A number of auxiliary results of independent interest are obtained including some properties of the uniformly and nonuniformly weighted Sobolev spaces involved, connection coefficients between Zernike polynomials, an inverse inequality, and relations between the Fourier-Zernike expansions of a function and its derivatives. Keywords . Author Keywords:Zernike polynomials; Connection coefficients; Orthogonal projection; Weighted Sobolev space
dc.languageeng
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.relationinfo:eu-repo/grantAgreement//1130923
dc.relationinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93477
dc.relationhttps://link.springer.com/article/10.1007/s00365-016-9358-y
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleOrthogonal Polynomial Projection Error Measured in Sobolev Norms in the Unit Disk
dc.titleConstructive Approximation
dc.typeArticulo
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución