NONLINEARITY

dc.creatorQuaas-Berger, Alexander
dc.creatorXia, Aliang
dc.date2021-08-23T22:55:05Z
dc.date2022-07-07T02:30:59Z
dc.date2021-08-23T22:55:05Z
dc.date2022-07-07T02:30:59Z
dc.date2016
dc.date.accessioned2023-08-22T05:13:03Z
dc.date.available2023-08-22T05:13:03Z
dc.identifier1151180
dc.identifier1151180
dc.identifierhttps://hdl.handle.net/10533/251548
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8323205
dc.descriptionWe establish a Liouville type theorem for the fractional Lane-Emden system: {(-Delta)(alpha)u = v(q) in R-N, (-Delta)(alpha)v = u(p) in R-N, where alpha is an element of (0, 1), N > 2 alpha and p, q are positive real numbers and in an appropriate new range. To prove our result we will use the local realization of fractional Laplacian, which can be constructed as a Dirichlet-to-Neumann operator of a degenerate elliptic equation in the spirit of Caffarelli and Silvestre (2007 Commun. PDE 32 1245-60). Our proof is based on a monotonicity argument for suitable transformed functions and the method of moving planes in a half infinite cylinder (IR x S-+(N), where S-+(N) is the half unit sphere in RN+1) based on maximum principles which are obtained by barrier functions and a coupling argument using a fractional Sobolev trace inequality.
dc.descriptionRegular 2015
dc.descriptionFONDECYT
dc.descriptionFONDECYT
dc.languageeng
dc.relationhandle/10533/111557
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.relationhttps://doi.org/10.1088/0951-7715/29/8/2279
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleA Liouville type theorem for Lane-Emden systems involving the fractional Laplacian
dc.titleNONLINEARITY
dc.typeArticulo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución