Mathematische Annalen

dc.creatorKemppainen, Jukka
dc.creatorSiljander, Juhana
dc.creatorVergara-Aguilar, Vicente
dc.creatorZacher, Rico
dc.date2021-08-23T22:58:45Z
dc.date2022-07-07T14:55:32Z
dc.date2021-08-23T22:58:45Z
dc.date2022-07-07T14:55:32Z
dc.date2016
dc.date.accessioned2023-08-22T04:12:57Z
dc.date.available2023-08-22T04:12:57Z
dc.identifier1150230
dc.identifier1150230
dc.identifierhttps://hdl.handle.net/10533/252400
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8318645
dc.descriptionWe prove optimal estimates for the decay in time of solutions to a rather general class of non-local in time subdiffusion equations in . An important special case is the time-fractional diffusion equation, which has seen much interest during the last years, mostly due to its applications in the modeling of anomalous diffusion processes. We follow three different approaches and techniques to study this particular case: (A) estimates based on the fundamental solution and Young's inequality, (B) Fourier multiplier methods, and (C) the energy method. It turns out that the decay behaviour is markedly different from the heat equation case, in particular there occurs a critical dimension phenomenon. The general subdiffusion case is treated by method (B) and relies on a careful estimation of the underlying relaxation function. Several examples of kernels, including the ultraslow diffusion case, illustrate our results.
dc.descriptionRegular 2015
dc.descriptionFONDECYT
dc.descriptionFONDECYT
dc.languageeng
dc.relationhandle/10533/111557
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.relationhttps://doi.org/10.1007/s00208-015-1356-z
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDecay estimates for time-fractional and other non-local in time subdiffusion equations in R-d
dc.titleMathematische Annalen
dc.typeArticulo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución