Duke Mathematical Journal

dc.creatorUrzúa-Elia, Giancarlo Andrés
dc.date2021-08-23T22:54:56Z
dc.date2022-07-07T02:30:19Z
dc.date2021-08-23T22:54:56Z
dc.date2022-07-07T02:30:19Z
dc.date2017
dc.date.accessioned2023-08-22T04:06:31Z
dc.date.available2023-08-22T04:06:31Z
dc.identifier1150068
dc.identifier1150068
dc.identifierhttps://hdl.handle.net/10533/251505
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8318128
dc.descriptionLet k be an algebraically closed field of characteristic p > 0, and let C be a non-singular projective curve over k. We prove that for any real number x >= 2, there are minimal surfaces of general type X over k such that (a) c(1)(2) (X) > 0, c(2) (X) > 0, (b) pi(et)(1)(X) similar or equal to pi(et)(1)(C), and (c) c(1)(2) (X)/c(2()X) is arbitrarily close to x. In particular, we show the density of Chern slopes in the pathological Bogomolov-Miyaoka-Yau interval (3, infinity) for any given p. Moreover, we prove that for C =P-1 there exist surfaces X as above with H-1 (X, O-X) = 0, that is, with Picard scheme equal to a reduced point. In this way, we show that even surfaces with reduced Picard scheme are densely persistent in [2, infinity) for any given p.
dc.descriptionRegular 2015
dc.descriptionFONDECYT
dc.descriptionFONDECYT
dc.languageeng
dc.relationhandle/10533/111557
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.relationhttp://www.cimach.cl/ambitosonoro/AmbitoSonoro1.pdf
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleChern Slopes Of Surfaces Of General Type In Positive Characteristic
dc.titleDuke Mathematical Journal
dc.typeArticulo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución