HANDBOOK OF DIFFERENTIAL EQUATIONS: STATIONARY PARTIAL DIFFERENTIAL EQUATIONS

dc.creatorDavila Bonczos, Juan Diego
dc.date2016-12-27T21:51:39Z
dc.date2022-06-17T20:42:27Z
dc.date2016-12-27T21:51:39Z
dc.date2022-06-17T20:42:27Z
dc.date2008
dc.date.accessioned2023-08-22T03:53:23Z
dc.date.available2023-08-22T03:53:23Z
dc.identifier1050725
dc.identifier9780444532411 
dc.identifierhttps://hdl.handle.net/10533/165937
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8317110
dc.descriptionWe are concerned in this survey with singular solutions to semi-linear elliptic problems. An example of the type of equations we are interested in is the Gelfand-Liouville problem -/'"u = 'Ae" on a smooth bounded domain Q of ffi.N with zero Dirichlet boundary condition. We explore up to what degree known results for this problem are valid in other situations with a similar structure, with emphasis on the extremal solution and its properties. Of interest is the question of identifying conditions such that the extremal solution is singular. We find that in the problems studied, there is a strong link between these conditions and Hardy-type inequalities.
dc.descriptionFONDECYT
dc.description624
dc.descriptionFONDECYT
dc.languageeng
dc.publisherELSEVIER
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI 2.0
dc.relationinfo:eu-repo/grantAgreement/Fondecyt/1050725
dc.relationinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93479
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleSINGULAR SOLUTIONS OF SEMI-LINEAR ELLIPTIC PROBLEMS HANDBOOK OF DIFFERENTIAL EQUATIONS
dc.titleHANDBOOK OF DIFFERENTIAL EQUATIONS: STATIONARY PARTIAL DIFFERENTIAL EQUATIONS
dc.typeCapitulo de libro
dc.typeinfo:eu-repo/semantics/bookPart
dc.coverageAMSTERDAM


Este ítem pertenece a la siguiente institución