PROCEEDINGS OF THE WORLD CONGRESS ON ENGINEERING

dc.creatorBahamonde Rozas, Natalia Carolina
dc.creatorOssandon Veliz, Sebastian Eduardo
dc.date2016-12-27T21:49:13Z
dc.date2022-06-17T20:34:29Z
dc.date2016-12-27T21:49:13Z
dc.date2022-06-17T20:34:29Z
dc.date2011
dc.date.accessioned2023-08-22T01:12:06Z
dc.date.available2023-08-22T01:12:06Z
dc.identifier3080009
dc.identifier9789881821065 
dc.identifierhttps://hdl.handle.net/10533/165167
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8304606
dc.descriptionA new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.A new mathematical representation, based on a discrete-time nonlinear state space formulation, is presented to characterize a Generalized Auto Regresive Conditional Heteroskedasticity (GARCH) model. Nonlinear parameter estimation and nonlinear state estimation, for this state space model, using an Extended Kalman Filter (EKF) are described. Finally some numerical results, which make evident the effectiveness and relevance of the proposed nonlinear estimation are given.
dc.descriptionFONDECYT
dc.descriptionFONDECYT
dc.languageeng
dc.publisherINTERNATIONAL ASSOCIATION OF ENGINEERS
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI 2.0
dc.relationinfo:eu-repo/grantAgreement/Fondecyt/3080009
dc.relationinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93479
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleON THE NONLINEAR ESTIMATION OF GARCH MODELS. USING AN EXTENDED KALMAN FILTER
dc.titlePROCEEDINGS OF THE WORLD CONGRESS ON ENGINEERING
dc.typeCapitulo de libro
dc.typeinfo:eu-repo/semantics/bookPart


Este ítem pertenece a la siguiente institución