info:eu-repo/semantics/article
COVID-19 ResNet: Residual neural network for COVID-19 classification with bayesian data augmentation
COVID-19 ResNet: Red neural residual para la clasificación de la COVID-19 con aumento de imágenes con optimización bayesiana
Registro en:
10.18272/aci.v13i2.2288
Autor
Baldeon calisto, Maria
Balseca Zurita, Javier Sebastián
Cruz Patiño, Martin Alejandro
Institución
Resumen
COVID-19 is an infectious disease caused by a novel coronavirus called SARS-CoV-2. The first case appeared in December 2019, and until now it still represents a significant challenge to many countries in the world. Accurately detecting positive COVID-19 patients is a crucial step to reduce the spread of the disease, which is characterize by a strong transmission capacity. In this work we implement a Residual Convolutional Neural Network (ResNet) for an automated COVID-19 diagnosis. The implemented ResNet can classify a patient´s Chest-Xray image into COVID-19 positive, pneumonia caused from another virus or bacteria, and healthy. Moreover, to increase the accuracy of the model and overcome the data scarcity of COVID-19 images, a personalized data augmentation strategy using a three-step Bayesian hyperparameter optimization approach is applied to enrich the dataset during the training process. The proposed COVID-19 ResNet achieves a 94% accuracy, 95% recall, and 95% F1-score in test set. Furthermore, we also provide an insight into which data augmentation operations are successful in increasing a CNNs performance when doing medical image classification with COVID-19 CXR. La COVID-19 es una enfermedad infecciosa causada por un nuevo coronavirus llamado SARS-CoV-2. El primer caso apareció en diciembre del 2019 y hasta el momento sigue representando un gran desafío a nivel mundial. La precisa detección del virus en pacientes COVID-19 positivos es un paso crucial para reducir la propagación de esta enfermedad altamente contagiosa. En este trabajo se implemente una red neuronal residual convolucional (ResNet) para el diagnostico automatizado de la COVID-19. La ResNet implementada puede clasificar la radiografía del tórax de un paciente en COVID-19 positivo, neumonía causada por otro virus o bacteria, y paciente saludable. Además, para aumentar la precisión del modelo y superar la escasez de imágenes médicas en el set de entrenamiento, se aplica una estrategia de aumento de datos personalizada utilizando la optimización bayesiana en tres pasos. La ResNet propuesta alcanza un 94% de precisión, 95% de sensibilidad y 95% en el F1-score en set de preba. Adicionalmente, presentamos las operaciones de aumento de datos que ayudaron a incrementar el rendimiento de la red neuronal y que pueden ser utilizados por otros investigadores en el desarrollo de modelos para la clasificación de imágenes médicas.