info:eu-repo/semantics/article
Bayesian Hierarchical Tobit Models: an application to travel distance analysis
Modelos Tobit Bayesianos Jerárquicos: aplicación al análisis de la distancia de viaje
Registro en:
10.15517/jte.v27i1.27196
Autor
Aguero-Valverde, Jonathan
Institución
Resumen
The objective of travel distance models is to better understand travel behavior so that policies can be implemented for reducing travel and with that the externalities of transport such as air pollution, congestion, and crashes. Hierarchical Bayesian models offer a flexible framework to analyze travel behavior by allowing the study of short term decisions of the activity and travel choices as well as long term decisions of residential and employment location. Since travel distance is censored at zero for a significant fraction of the observations, parameter estimates obtained by conventional regression methods are biased. Consistent parameter estimates can be obtained by using the Tobit model. The purpose of this paper is to demonstrate the application of fully Bayesian Tobit hierarchical models to the analysis of travel distance; this with the goal of accommodating the multilevel and censored nature of the data.Results show that the hierarchical Tobit Model performs significantly better than the non-hierarchical model as measure by the Deviance and Deviance Information Criteria. Further, the highly significant variance at the individual and location levels, demonstrates the importance of using a multilevel approach.The distance traveled increases with years of study and job qualification. In addition, all the members of the household travel less than the householder and women travel less than men. Industry sectors also show significant differences in travel time: workers in the secondary and tertiary sectors travel farther than workers in the primary sector. Land price is significantly correlated with distance traveled in both residence and employment locations. El objetivo de los modelos de distancia de viaje es entender el comportamiento de viajede los usuarios, de forma tal que se puedan implementar políticas para reducir la distancia de viaje y, con esto, externalidades del transporte tales como contaminación del aire, congestión y accidentes. Los modelos Bayesianos Jerárquicos ofrecen una metodología flexible para analizar el comportamiento de viaje al permitir el estudio tanto de las decisiones de corto plazo de la actividad y las selecciones de viaje así como las decisiones de largo plazo como la localización de la vivienda y el lugar de trabajo. Como la distancia de viaje está censurada en cero para una proporción importante de los datos, los parámetros obtenidos por medio de regresiones lineales convencionales están sesgados. Estimaciones no sesgadas de los parámetros pueden ser obtenidas usando modelos Tobit. El propósito de este artículo es demostrar la aplicación de modelos Tobit Bayesianos jerárquicos al análisis de la distancia de viaje, considerando la naturaleza multinivel y censurada de los datos.Los resultados muestran que el modelo Tobit Bayesiano jerárquico tiene un desempeñosignificativamente mejor que el modelo no jerárquico al medir la bondad de ajuste la Devianza t el Criterio de Información de la Devianza. Más aún, la varianza es estadísticamente muy significativa tanto para el nivel individual como para el nivel de ubicación, lo cual demuestra laimportancia de usar una metodología multinivel.