info:eu-repo/semantics/article
Learning temporal nodes Bayesian networks
Autor
Pablo Francisco Hernández Leal
Jesús Antonio González Bernal
Eduardo Francisco Morales Manzanares
Luis Enrique Sucar Succar
Resumen
Temporal nodes Bayesian networks (TNBNs) are analternative todynamicBayesian networks for temporal reasoning with much simpler and efficient models in some domains. TNBNs are composed of temporal nodes, temporal intervals, and probabilistic dependencies. However, methods for learning this type of models from data have not yet been developed. In this paper, we propose a learning algorithm to obtain the structure and temporal intervals for TNBNs from data. The method consists of three phases: (i) obtain an initial approximation of the intervals, (ii) obtain a structure using a standard algorithm and (iii) refine the intervals for each temporal node based on a clustering algorithm. We evaluated the method with syn- thetic data from three different TNBNs of different sizes. Our method obtains the best score using a combined measure of interval quality and prediction accuracy, and a competitive structural quality with lower running times, compared to other related algorithms. We also present a real world application of the algorithm with data obtained from a combined cycle power plant in order to diagnose temporal faults.
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Compendio de innovaciones socioambientales en la frontera sur de México
Adriana Quiroga -
Caminar el cafetal: perspectivas socioambientales del café y su gente
Eduardo Bello Baltazar; Lorena Soto_Pinto; Graciela Huerta_Palacios; Jaime Gomez -
Material de empaque para biofiltración con base en poliuretano modificado con almidón, metodos para la manufactura del mismo y sistema de biofiltración
OLGA BRIGIDA GUTIERREZ ACOSTA; VLADIMIR ALONSO ESCOBAR BARRIOS; SONIA LORENA ARRIAGA GARCIA