info:eu-repo/semantics/article
THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION
Autor
Victor De la Luz
Resumen
We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimeter wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We callthis structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMCshows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Three-dimensional hyperspectral camera based on near-infrared single-pixel imaging
Carlos Alexander Osorio Quero -
Innovative planar antenna designs in the microwave range
ALEJANDRO RAMIREZ MENDEZ -
Análisis de características estadísticamente significativas en el dominio temporal de señales ECG y PPG para identificación biométrica bimodal
Denisse Escarlette Mancilla Palestina