info:eu-repo/semantics/article
A Bayesian approach for object classification based on clusters of SIFT local features
Autor
Leonardo Chang Fernández
Luis Enrique Sucar Succar
Eduardo Francisco Morales Manzanares
Resumen
Several methods have been presented in the literature that successfully used SIFT features for object identification, as they are reasonably invariant to translation, rotation, scale, illumination and partial occlusion. However, they have poor performance for classification tasks. In this work, SIFT features are used to solve object class recognition problems in images using a two-step process. In its first step, the proposed method performs clustering on the extracted features in order to characterize the appearance of the different classes. Then, in the classification step, it uses a three layer Bayesian network for object class recognition. Experiments show quantitatively that clusters of SIFT features are suitable to represent classes of objects. The main contributions of this paper are the introduction of a Bayesian network approach in the classification step to improve performance in an object class recognition task, and a detailed experimentation that shows robustness to changes in illumination, scale, rotation and partial occlusion.
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Compendio de innovaciones socioambientales en la frontera sur de México
Adriana Quiroga -
Caminar el cafetal: perspectivas socioambientales del café y su gente
Eduardo Bello Baltazar; Lorena Soto_Pinto; Graciela Huerta_Palacios; Jaime Gomez -
Material de empaque para biofiltración con base en poliuretano modificado con almidón, metodos para la manufactura del mismo y sistema de biofiltración
OLGA BRIGIDA GUTIERREZ ACOSTA; VLADIMIR ALONSO ESCOBAR BARRIOS; SONIA LORENA ARRIAGA GARCIA