info:eu-repo/semantics/article
General framework for class-specific feature selection
Autor
BARBARA BERENICE PINEDA BAUTISTA
Jesús Ariel Carrasco Ochoa
José Francisco Martínez Trinidad
Resumen
Commonly, when a feature selection algorithm is applied, a single feature subset is selected for all the classes, but this subset could be inadequate for some classes. Class-specific feature selection allows selecting a possible different feature subset for each class. However, all the class-specific feature selection algorithms have been proposed for a particular classifier, which reduce their applicability. In this paper, a general framework for using any traditional feature selector for doing class-specific feature selection, which allows using any classifier, is proposed. Experimental results and a comparison against traditional feature selectors showing the suitability of the proposed framework are included.
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Acoustic feature selection and classification of emotions in speech using a 3D continuous emotion model
Humberto Pérez Espinosa; CARLOS ALBERTO REYES GARCIA; Luis Villaseñor Pineda -
Diseño de algoritmos bioinspirados para la selección de características en el análisis de sentimientos de documentos en español
Rosa Alejandra Ortega del Castillo -
Métodos para la selección de características y clasificación de péptidos antimicrobianos
Jesús Armando Beltrán Verdugo