info:eu-repo/semantics/article
Decision tree induction using a fast splitting attribute selection for large datasets
Autor
Anilú Franco Arcega
Jesús Ariel Carrasco Ochoa
José Francisco Martínez Trinidad
Resumen
Several algorithms have been proposed in the literature for building decision trees (DT) for large datasets, however almost all of them have memory restrictions because they need to keep in main memory the whole training set, or a big amount of it, and such algorithms that do not have memory restrictions, because they choose a subset of the training set, need extra time for doing this selection or have parameters that could be very difficult to determine. In this paper, we introduce a new algorithm that builds decision trees using a fast splitting attribute selection (DTFS) for large datasets. The proposed algorithm builds a DT without storing the whole training set in main memory and having only one parameter but being very stable regarding to it. Experimental results on both real and synthetic datasets show that our algorithm is faster than three of the most recent algorithms for building decision trees for large datasets, getting a competitive accuracy.
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Compendio de innovaciones socioambientales en la frontera sur de México
Adriana Quiroga -
Caminar el cafetal: perspectivas socioambientales del café y su gente
Eduardo Bello Baltazar; Lorena Soto_Pinto; Graciela Huerta_Palacios; Jaime Gomez -
Material de empaque para biofiltración con base en poliuretano modificado con almidón, metodos para la manufactura del mismo y sistema de biofiltración
OLGA BRIGIDA GUTIERREZ ACOSTA; VLADIMIR ALONSO ESCOBAR BARRIOS; SONIA LORENA ARRIAGA GARCIA