info:eu-repo/semantics/article
Composite recurrent neural networks for long-term prediction of highly-dynamic time series supported by wavelet decomposition
Autor
MARIA DEL PILAR GOMEZ GIL
ANGEL MARIO GARCIA PEDRERO
JUAN MANUEL RAMIREZ CORTES
Resumen
Even though it is known that chaotic time series cannot be accurately predicted, there is a need to forecast their behavior in may decision processes. Therefore several non-linear prediction strategies have been developed, many of them based on soft computing. In this chapter we present a new neural network architecutre, called Hybrid and based-on-Wavelet-Reconstructions Network (HWRN), which is able to perform recursive long-term prediction over highly dynamic and chaotic time series. HWRN is based on recurrent neural networks embedded in a two-layer neural structure, using as a learning aid, signals generated by wavelets coefficients obtained from the training time series. In the results reported here, HWRN was able to predict better than a feed-forward neural network and that a fully-connected, recurrent neural network with similar number of nodes. Using the benchmark known as NN5, which contains chaotic time series, HWRN obtained in average a SMAPE = 26% compared to a SMAPE = 61% obtained by a fully-connected recurrent neural network and a SMAPE = 49% obtained by a feed forward network.