dc.creatorABRAHAM MOISES CANUL PECH
dc.creatorERIC JOSE AVILA VALES
dc.creatorGERARDO EMILIO GARCIA ALMEIDA
dc.date2016-10-05
dc.date.accessioned2023-07-25T13:49:19Z
dc.date.available2023-07-25T13:49:19Z
dc.identifierhttp://redi.uady.mx:8080/handle/123456789/541
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7794164
dc.descriptionThis paper investigates the global dynamics and bifurcation structure of a viral infection logistic model with delayed nonlinear CTL response and periodic immune response. It is proved that the basic reproduction numbers, R0 and R1, determine the outcome of viral infection. Besides changes in the amplititude of lytic component, we show, via numerical simulations, that , the birth rate of susceptible host cells and the maximum proliferation of target cells are crucial to the outcome of a viral infection. Time delay can alter the period of oscillation for the larger level of periodic forcing. Period doubling bifurcations of the system are observed via simulations. Our results can provide a possible explanation of the oscillation behaviors of virus population,which were observed in chronic HBV or HCV carriers.
dc.formatapplication/pdf
dc.languageeng
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceurn:issn:1916-9795
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectGlobal stability
dc.subjectNumerical simulation
dc.subjectUniform persistence
dc.subjectVirus dynamics
dc.titleDynamics of a viral infection logistic model with delayed nonlinear CTL response and periodic immune response
dc.typeinfo:eu-repo/semantics/article
dc.coverageGeneración de conocimiento
dc.audienceresearchers


Este ítem pertenece a la siguiente institución