dc.creatorERIC JOSE AVILA VALES
dc.creatorNOE GUADALUPE CHAN CHI
dc.creatorGERARDO EMILIO GARCIA ALMEIDA
dc.creatorCRUZ VARGAS DE LEON
dc.date2015-05-15
dc.date.accessioned2023-07-25T13:49:13Z
dc.date.available2023-07-25T13:49:13Z
dc.identifierhttp://redi.uady.mx:8080/handle/123456789/499
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7794122
dc.descriptionIn this paper we study a model of HCV with mitotic proliferation, a saturation infection rate and a discrete intracellular delay: the delay corresponds to the time between infection of a infected target hepatocytes and production of new HCV particles. We establish the global stability of the infection–free equilibrium and existence, uniqueness, local and global stabilities of the infected equilibrium, also we establish the occurrence of a Hopf bifurcation. We will determine conditions for the permanence of model, and the length of delay to preserve stability. The unique infected equilibrium is globally-asymptotically stable for a special case, where the hepatotropic virus is non-cytopathic. We present a sensitivity analysis for the basic reproductive number. Numerical simulations are carried out to illustrate the analytical results.
dc.formatapplication/pdf
dc.languageeng
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceurn:issn:0096-3003
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/7
dc.subjectLocal stability
dc.subjectHopf bifurcation
dc.subjectGlobal stability
dc.subjectPermanence
dc.subjectSensitivity analysis
dc.titleStability and Hopf bifurcation in a delayed viral infection model with mitosis transmission
dc.typeinfo:eu-repo/semantics/article
dc.coverageGeneración de conocimiento
dc.audienceresearchers


Este ítem pertenece a la siguiente institución