dc.creatorJiménez-Rodríguez, Esteban
dc.creatorSánchez-Torres, Juan D.
dc.creatorLoukianov, Alexander
dc.date2017-03-03T20:28:15Z
dc.date2017-03-03T20:28:15Z
dc.date2016-10
dc.date.accessioned2023-07-21T22:12:41Z
dc.date.available2023-07-21T22:12:41Z
dc.identifierJiménez-Rodrıguez, E., Sánchez-Torres, J.D. and Loukianov, A. "On Optimal Predefined-Time Stabilization". XVII Latin American Conference of Automatic Control, IFAC, Medellín, Colombia, 2016, pp. 317--322.
dc.identifierhttp://hdl.handle.net/11117/4260
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7761804
dc.descriptionThis paper addresses the problem of optimal predefined-time stability. Predefined-time stable systems are a class of fixed-time stable dynamical systems for which the minimum bound of the settling-time function can be defined a priori as a explicit parameter of the system. Sufficient conditions for a controller to solve the optimal predefined-time stabilization problem for a given system are provided. These conditions involve a Lyapunov function that satisfy both a certain differential inequality for guaranteeing predefined-time stability and the steady-state Hamilton-Jacobi-Bellman equation for guaranteeing optimality. Finally, this result is applied to the predefined-time optimization of the sliding manifold reaching phase.
dc.descriptionITESO, A.C.
dc.descriptionCINVESTAV-IPN
dc.formatapplication/pdf
dc.languageeng
dc.publisherInternational Federation of Automatic Control
dc.relationLatin American Conference of Automatic Control;XVII
dc.rightshttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdf
dc.subjectHamilton-Jacobi-Bellman Equation
dc.subjectLyapunov Functions
dc.subjectOptimal Control
dc.subjectPredefined-Time Stability
dc.titleOn Optimal Predefined-Time Stabilization
dc.typeinfo:eu-repo/semantics/conferencePaper


Este ítem pertenece a la siguiente institución