dc.contributorDíaz-Ruelas, Álvaro P.
dc.creatorLozano-Orozco, Gabriela
dc.date2023-01-26T20:16:32Z
dc.date2023-01-26T20:16:32Z
dc.date2022-11
dc.date.accessioned2023-07-21T21:59:20Z
dc.date.available2023-07-21T21:59:20Z
dc.identifierLozano-Orozco, G. (2022). Markov Chain Monte Carlo Approach to the Analysis and Forecast of Grain Prices and Volatility Monitoring. Trabajo de obtención de grado, Maestría en Ciencia de Datos. Tlaquepaque, Jalisco: ITESO.
dc.identifierhttps://hdl.handle.net/11117/8437
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7756830
dc.descriptionPublic studies on the dynamics of food staples as important as cereals (grains) are relatively scarce. Here we undertake a preliminary analysis of the time series for corn, wheat, soybean, and oat prices first via classical ARIMA/GARCH models, and later complementing with the more complex Stochastic Volatility (SV) models. The goal is to improve upon the classical results by implementing a Bayesian analysis through the construction of a suitable Markov Chain Monte Carlo Model with improved volatility analysis and forecasting capabilities. The performance of the SV model is benchmarked against the classical ARMA/GARCH approach, and both are discussed as monitoring tools for the volatility prices.
dc.formatapplication/pdf
dc.languageeng
dc.publisherITESO
dc.rightshttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdf
dc.subjectMcmc
dc.subjectMarkov Chain Monte Carlo
dc.subjectGrains
dc.subjectStochastic Volatility Models
dc.titleMarkov Chain Monte Carlo Approach to the Analysis and Forecast of Grain Prices and Volatility Monitoring
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/acceptedVersion


Este ítem pertenece a la siguiente institución