dc.contributorBecerra-López, Fernando I.
dc.creatorJayakumar, Abinaya
dc.date2021-08-26T20:32:26Z
dc.date2021-08-26T20:32:26Z
dc.date2021-05
dc.date.accessioned2023-07-21T21:59:17Z
dc.date.available2023-07-21T21:59:17Z
dc.identifierJayakumar, A. (2021). Deep Learning Technique for Image Classification by Segmentation. Trabajo de obtención de grado, Maestría en Ciencia de Datos. Tlaquepaque, Jalisco: ITESO.
dc.identifierhttps://hdl.handle.net/11117/7496
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7756805
dc.descriptionSince images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems. Digital image processing allows the use of much more complex algorithms, and hence, can offer both more sophisticated performance at simple tasks, and the implementation of methods that would be impossible by analogue means. In particular, digital image processing is a concrete application of, and a practical technology based on classification, localization, feature extraction and segmentation. The main objective is to understand the following challenges and identify a solution.
dc.formatapplication/pdf
dc.languageeng
dc.publisherITESO
dc.rightshttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdf
dc.subjectDeep Learning
dc.subjectImage Classification
dc.subjectImage Segmentation
dc.titleDeep Learning Technique for Image Classification by Segmentation
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/acceptedVersion


Este ítem pertenece a la siguiente institución