dc.creatorRuiz-Cruz, Riemann
dc.creatorSedano, Chelsie
dc.creatorFlores, Oscar
dc.date2021-04-27T23:46:02Z
dc.date2021-04-27T23:46:02Z
dc.date2019-11
dc.date.accessioned2023-07-21T21:57:42Z
dc.date.available2023-07-21T21:57:42Z
dc.identifierR. Ruiz-Cruz, C. Sedano and O. Flores. Genetic optimization of a trading algorithm based on pattern recognition. 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Guayaquil, Ecuador, 2019, pp. 1-6, doi: 10.1109/LA-CCI47412.2019.9037052.
dc.identifier978-1-7281-5666-8
dc.identifierhttps://hdl.handle.net/11117/6574
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7756141
dc.descriptionIn the present paper, a trading strategy based onpattern recognition is optimized by means of a genetic algorithm.The genetic algorithm is used to determine decisions of buy/sellbased on the patterns found through time for a portfolio in thestock market. The predominant algorithms used in this workwere theK-means clustering algorithm to find the patterns indifferent time lapses, and the genetic algorithm for optimization.The results are supported by simulations using a selected sharesof the Mexican stock market.
dc.descriptionITESO, A.C.
dc.formatapplication/pdf
dc.languageeng
dc.publisherIEEE
dc.rightshttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdf
dc.subjectGenetic algorithm
dc.subjectPortfolio optimization
dc.subjectTrading algorithm
dc.titleGenetic optimization of a trading algorithm based on pattern recognition
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion


Este ítem pertenece a la siguiente institución