dc.creatorJimenez-Martinez M., Alfaro-Ponce M.
dc.date2020-12-11T06:46:44Z
dc.date2020-12-11T06:46:44Z
dc.date2019
dc.date.accessioned2023-07-21T20:22:15Z
dc.date.available2023-07-21T20:22:15Z
dc.identifier2-s2.0-85062325761
dc.identifierhttp://repositorio.udlap.mx/xmlui/handle/123456789/13618
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7745741
dc.descriptionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85062325761&doi=10.1016%2fj.ijfatigue.2019.02.043&partnerID=40&md5=3c8e0991d912a75468fc3900c595cc42
dc.sourceInternational Journal of Fatigue
dc.titleFatigue damage effect approach by artificial neural network
dc.typeArticle


Este ítem pertenece a la siguiente institución