dc.creatorGarcia-Bracamonte J.E., Ramirez-Cortes J.M., De Jesus Rangel-Magdaleno J., Gomez-Gil P., Peregrina-Barreto H., Alarcon-Aquino V.
dc.date2020-12-11T06:46:42Z
dc.date2020-12-11T06:46:42Z
dc.date2019
dc.date.accessioned2023-07-21T20:22:13Z
dc.date.available2023-07-21T20:22:13Z
dc.identifier2-s2.0-85064632345
dc.identifierhttp://repositorio.udlap.mx/xmlui/handle/123456789/13605
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7745728
dc.descriptionhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85064632345&doi=10.1109%2fTIM.2019.2900143&partnerID=40&md5=ba4ad4e0487bf573cd6b3a75ec8c825f
dc.sourceIEEE Transactions on Instrumentation and Measurement
dc.titleAn Approach on MCSA-Based Fault Detection Using Independent Component Analysis and Neural Networks
dc.typeArticle


Este ítem pertenece a la siguiente institución