dc.contributorGarcia Medina, Andres
dc.contributorEscuela de Graduados en Administración y Dirección de Empresas
dc.contributorMiguel, Gonzalez Mendoza
dc.contributorNuñez Mora, José Antonio
dc.contributorSede EGADE Santa Fe
dc.contributoremijzarate
dc.creatorGARCIA MEDINA, ANDRES; 298598
dc.creatorMendoza Urdiales, Román Alejandro
dc.date.accessioned2022-11-25T21:02:40Z
dc.date.accessioned2023-07-19T19:56:56Z
dc.date.available2022-11-25T21:02:40Z
dc.date.available2023-07-19T19:56:56Z
dc.date.created2022-11-25T21:02:40Z
dc.date.issued2022
dc.identifierMendoza Urdiales, R. A. (2022). A comprehensive analysis of behavioural economics applied to social media using automated methods and asymmetric modelling (Disertación doctoral). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/649938
dc.identifierhttps://hdl.handle.net/11285/649938
dc.identifierhttps://orcid.org/0000-0003-2888-156X
dc.identifier904372
dc.identifier57272941600
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7716404
dc.description.abstractFinancial economic research has extensively documented the fact that the impact of the arrival of negative news on stock prices is more intense than that of the arrival of positive news. The authors of the present study followed an innovative approach based on the utilization of two artificial intelligence algorithms to test that asymmetric response effect. Methods: The first algorithm was used to web scrape the social network Twitter to download the top tweets of the 24 largest market-capitalized publicly traded companies in the world during the last decade. A second algorithm was then used to analyze the contents of the tweets, converting that information into social sentiment indexes and building a time series for each considered company. After comparing the social sentiment indexes’ movements with the daily closing stock price of individual companies using transfer entropy, our estimations confirmed that the intensity of the impact of negative and positive news on the daily stock prices is statistically different, as well as that the intensity with which negative news affects stock prices is greater than that of positive news. The results support the idea of the asymmetric effect that negative sentiment has a greater effect than positive sentiment, and these results were confirmed with the EGARCH model
dc.languageeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationpublishedVersion
dc.relationREPOSITORIO NACIONAL CONACYT
dc.rightshttp://creativecommons.org/licenses/by/4.0
dc.rightsopenAccess
dc.titleA comprehensive analysis of behavioural economics applied to social media using automated methods and asymmetric modelling
dc.typeTrabajo de grado, Doctorado / doctoral Degree Work


Este ítem pertenece a la siguiente institución