dc.contributorSociety for Learning Analytics Research
dc.contributorTecnologico de Monterrey
dc.creatorJuan Andrés, Talamás Carvajal
dc.date.accessioned2023-04-24T22:37:59Z
dc.date.accessioned2023-07-19T19:24:42Z
dc.date.available2023-04-24T22:37:59Z
dc.date.available2023-07-19T19:24:42Z
dc.date.created2023-04-24T22:37:59Z
dc.date.issued2023-03-15
dc.identifierTalamas-Carvajal, J. A. (2023, March 13-17). The Middle-Man Between Models and Mentors: SHAP Values to Explain Dropout Prediction Models in Higher Education [Poster presentation]. Learning Analytics and Knowledge Conference, Arlington, Texas, USA. https://www.solaresearch.org/wp-content/uploads/2023/03/LAK23_CompanionProceedings.pdf
dc.identifierhttps://hdl.handle.net/11285/650419
dc.identifierhttps://orcid.org/0000-0002-6140-088X
dc.identifier840053
dc.identifier58126519600
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7716103
dc.description.abstractOne of the challenges of prediction or classification models in education is that the best performing models usually come in a "black box", meaning that it is almost impossible for non-data scientists (and sometimes even experienced researchers) to understand the rationale behind a model prediction. In this poster we show how SHAP (SHapley Additive exPlanations) values can be used for model explainability as a baseline, and how this same tool might be used for further variable analysis and possibly even bias detection by obtaining SHAP values and figures for two dropout prediction models trained with student data from two different educational models implemented in the same University.
dc.languageeng
dc.relationpublishedVersion
dc.relationhttps://www.solaresearch.org/wp-content/uploads/2023/03/LAK23_CompanionProceedings.pdf
dc.relationFondo de Apoyo a Publicaciones Tecnologico de Monterrey
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.rightsopenAccess
dc.subjectHUMANIDADES Y CIENCIAS DE LA CONDUCTA::PEDAGOGÍA::TEORÍA Y MÉTODOS EDUCATIVOS
dc.titleThe middle-man between models and mentors: SHAP values to explain dropout prediction models in higher education
dc.typeConferencia/Lecture


Este ítem pertenece a la siguiente institución