dc.contributorhttps://ror.org/03ayjn504
dc.contributorhttps://ror.org/04f0qj703
dc.creatorBALDERAS SILVA, DAVID CHRISTOPHER; 222222
dc.creatorMagallán Ramírez, Daniela
dc.creatorMartínez Aguilar, Jorge David
dc.creatorRodríguez Tirado, Areli
dc.creatorBalderas Silva, David Christopher
dc.creatorLópez Caudana, Edgar Omar
dc.creatorMoreno García, Carlos Francisco
dc.date.accessioned2023-06-12T23:31:06Z
dc.date.accessioned2023-07-19T19:21:48Z
dc.date.available2023-06-12T23:31:06Z
dc.date.available2023-07-19T19:21:48Z
dc.date.created2023-06-12T23:31:06Z
dc.date.issued2022-04-04
dc.identifierMagallán Ramírez, D., Martínez Aguilar, J. D., Rodríguez Tirado, A., Balderas Silva, D. C., López Caudana, E. O., & Moreno García, C. F. (2022). Implementation of NAO robot maze navigation based on computer vision and collaborative learning. Frontiers in Robotics and AI, 9, 1–13. https://doi.org/https://doi.org/10.3389/frobt.2022.834021
dc.identifierhttps://doi.org/10.3389/frobt.2022.834021
dc.identifierhttps://hdl.handle.net/11285/650861
dc.identifierFrontiers in Robotics and AI
dc.identifierhttps://orcid.org/0000-0001-7630-8608
dc.identifierhttps://orcid.org/0000-0002-1216-4219
dc.identifierhttps://orcid.org/0000-0001-7218-9023
dc.identifier9
dc.identifier834021 - 1
dc.identifier834021 - 13
dc.identifier6504082224
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7716012
dc.description.abstractMaze navigation using one or more robots has become a recurring challenge in scientific literature and real life practice, with fleets having to find faster and better ways to navigate environments such as a travel hub, airports, or for evacuation of disaster zones. Many methodologies have been explored to solve this issue, including the implementation of a variety of sensors and other signal receiving systems. Most interestingly, camera-based techniques have become more popular in this kind of scenarios, given their robustness and scalability. In this paper, we implement an end-to-end strategy to address this scenario, allowing a robot to solve a maze in an autonomous way, by using computer vision and path planning. In addition, this robot shares the generated knowledge to another by means of communication protocols, having to adapt its mechanical characteristics to be capable of solving the same challenge. The paper presents experimental validation of the four components of this solution, namely camera calibration, maze mapping, path planning and robot communication. Finally, we showcase some initial experimentation in a pair of robots with different mechanical characteristics. Further implementations of this work include communicating the robots for other tasks, such as teaching assistance, remote classes, and other innovations in higher education.
dc.languageeng
dc.publisherFrontiers
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationpublishedVersion
dc.relationREPOSITORIO NACIONAL CONACYT
dc.relationhttps://www.frontiersin.org/articles/10.3389/frobt.2022.834021/full
dc.rightshttp://creativecommons.org/licenses/by/4.0
dc.rightsopenAccess
dc.subjectINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::OTRAS ESPECIALIDADES TECNOLÓGICAS
dc.titleImplementation of NAO robot maze navigation based on computer vision and collaborative learning
dc.typeArtículo/Article


Este ítem pertenece a la siguiente institución