dc.contributorInternational Conference on Information and Education Innovations Committee
dc.contributorInstitute for the Future of Education, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, 64849, Nuevo León, México.
dc.contributorSchool of Languages, Cultures and Societies, University of Leeds, United Kingdom.
dc.contributorInstitute for the Future of Education, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, 64849, Nuevo León, México.
dc.creatorRamírez Montoya, María Soledad
dc.creatorMartinez Arboleda, Antonio
dc.creatorIbarra Vázquez, Gerardo
dc.date.accessioned2023-05-08T17:02:36Z
dc.date.accessioned2023-07-19T19:10:05Z
dc.date.available2023-05-08T17:02:36Z
dc.date.available2023-07-19T19:10:05Z
dc.date.created2023-05-08T17:02:36Z
dc.date.issued2023-04-15
dc.identifierhttps://hdl.handle.net/11285/650678
dc.identifierhttps://orcid.org/0000-0002-1274-706X
dc.identifierhttps://orcid.org/0000-0002-4391-5417
dc.identifierhttps://orcid.org/0000-0002-0782-5369
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7715643
dc.description.abstractSocial entrepreneurship competences promote training aimed at generating projects that create value. This study aimed to predict the perceived Social Entrepreneurship competence level and its factors employing explainable Machine learning models and using data samples of 408 students who were administered a social entrepreneurship competency instrument and the subcompetencies personal, leadership, social innovation, value and management. Our experiment results findend that explainable machine learning models such as Decision Trees and Random Forests can perfectly predict the perceived Social Entrepreneurship competence level and explain the factors that influence the perception of entrepreneurial competence. Entrepreneurial Management dimension was a prominent feature to predict the level of perceived competence in both models. These findings are intended to be of value to entrepreneurs, decision-makers and change agents in the academic, governmental, business and social sectors.
dc.languageeng
dc.relationacceptedVersion
dc.rightshttp://creativecommons.org/licenses/by/4.0
dc.rightsopenAccess
dc.subjectHUMANIDADES Y CIENCIAS DE LA CONDUCTA::PEDAGOGÍA::TEORÍA Y MÉTODOS EDUCATIVOS
dc.titlePredicting social entrepreneurship competence level and its factors:a machine learning approach
dc.typeConferencia/Lecture


Este ítem pertenece a la siguiente institución