dc.contributorChoque Rivero, Abdón Eddy
dc.creatorAmbriz Penn, Sergio Fidel
dc.date.accessioned2023-05-17T14:20:35Z
dc.date.accessioned2023-07-19T14:30:09Z
dc.date.available2023-05-17T14:20:35Z
dc.date.available2023-07-19T14:30:09Z
dc.date.created2023-05-17T14:20:35Z
dc.date.issued2013-07
dc.identifierhttp://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/11955
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7710374
dc.description.abstractEn los últimos siglos se han desarrollado profundamente dos ramas fundamentales de las matemáticas: Topología y Algebra. La topología estudia los conceptos de cercanía, comparación y clasificación de objetos, incluso la noción de límite e infinitud. Por otro lado, el álgebra analiza las operaciones naturales y las interacciones entre las mismas. También busca generalizar la aritmética a objetos con estructuras más abstractas. Estas nociones se han formalizado con el paso del tiempo por medio de propiedades con las que puede ser atribuido un cuerpo u objeto. Aunque estas áreas conforman gran parte de las matemáticas, tienden a desarrollarse muy bien de manera independiente. Sin embargo, en dominios más avanzados de las matemáticas como el análisis funcional, sistemas dinámicos, teoría de representación, entre otras, el álgebra y la topología comienzan a hacer contacto de manera natural. Muchos de los objetos más importantes en las matemáticas conllevan una mezcla de estructuras algebraicas y topológicas. Espacios topológicos de funciones, espacios vectoriales topológicos, campos topológicos, grupos de transformaciones y grupos topológicos son objetos de este estilo. Como su nombre lo indica, un grupo topológico es un grupo dotado de una topología de tal manera que se relacione con las operaciones presentes en el grupo: se pide que las funciones tomar inverso y la multiplicación del grupo sean continuas.
dc.description.abstractEn los últimos siglos se han desarrollado profundamente dos ramas fundamentales de las matemáticas: Topología y Algebra. La topología estudia los conceptos de cercanía, comparación y clasificación de objetos, incluso la noción de límite e infinitud. Por otro lado, el álgebra analiza las operaciones naturales y las interacciones entre las mismas. También busca generalizar la aritmética a objetos con estructuras más abstractas. Estas nociones se han formalizado con el paso del tiempo por medio de propiedades con las que puede ser atribuido un cuerpo u objeto. Aunque estas áreas conforman gran parte de las matemáticas, tienden a desarrollarse muy bien de manera independiente. Sin embargo, en dominios más avanzados de las matemáticas como el análisis funcional, sistemas dinámicos, teoría de representación, entre otras, el álgebra y la topología comienzan a hacer contacto de manera natural. Muchos de los objetos más importantes en las matemáticas conllevan una mezcla de estructuras algebraicas y topológicas. Espacios topológicos de funciones, espacios vectoriales topológicos, campos topológicos, grupos de transformaciones y grupos topológicos son objetos de este estilo. Como su nombre lo indica, un grupo topológico es un grupo dotado de una topología de tal manera que se relacione con las operaciones presentes en el grupo: se pide que las funciones tomar inverso y la multiplicación del grupo sean continuas.
dc.languagespa
dc.publisherUniversidad Michoacana de San Nicolás de Hidalgo
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectFISMAT-L-2013-0999
dc.subjectPropiedades
dc.subjectMatriz resolvente
dc.subjectMomentos
dc.titleAlgunas propiedades de la matriz resolvente del problema de Momentos de Hamburguer
dc.typeinfo:eu-repo/semantics/bachelorThesis


Este ítem pertenece a la siguiente institución