dc.contributor | Choque Rivero, Abdón Eddy | |
dc.creator | Cástulo Cruz, Pedro Luis | |
dc.date.accessioned | 2023-05-18T13:59:28Z | |
dc.date.accessioned | 2023-07-19T14:29:10Z | |
dc.date.available | 2023-05-18T13:59:28Z | |
dc.date.available | 2023-07-19T14:29:10Z | |
dc.date.created | 2023-05-18T13:59:28Z | |
dc.date.issued | 2016-07 | |
dc.identifier | http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/12061 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/7710083 | |
dc.description.abstract | Vamos a considerar el sistema lineal x ̇ = Ax + bu, completamente controlable, donde x 0 ∈ R n, u ∈ R, A es una matriz n × n cuyos elementos encima de la diagonal son iguales a 1 y los restantes ceros, b es un vector n-dimensional cuyo último componente es 1 y todos los demás 0. Hallar el control admisible | u |≤ 1, tales que la trayectoria fase x (t) del sistema x ̇ = Ax + bu (t), partiendo desde el punto de fase x (0) = x 0, llegue al origen en tiempo T > T min, es decir x (T) = 0. En la presente tesis revisamos de manera detallada la sección [➜ 4] y [➜ 5] del libro [5] donde se estudia el principio del máximo admisible, en el trabajo hacemos la comparación del control óptimo u opt (t) respecto la rapidez y el control u max (t) que resulta de la aplicación del principio del máximo admisible. Estos dos controles toman valores ±1 y ambos garantizan el traslado de un punto inicial x (0) = x 0 al origen en tiempo finito. El control óptimo u opt (t) realiza el traslado de x (0) = x 0 al origen en un tiempo mínimo posible (T min). El control del máximo admisible u max (t) también realiza el traslado al origen en tiempo T > T min. Se dan ejemplos para n = 2 y n = 3, se comparan los tiempos de conmutación del control óptimo con respecto al control admisible. | |
dc.description.abstract | Vamos a considerar el sistema lineal x ̇ = Ax + bu, completamente controlable, donde x 0 ∈ R n, u ∈ R, A es una matriz n × n cuyos elementos encima de la diagonal son iguales a 1 y los restantes ceros, b es un vector n-dimensional cuyo último componente es 1 y todos los demás 0. Hallar el control admisible | u |≤ 1, tales que la trayectoria fase x (t) del sistema x ̇ = Ax + bu (t), partiendo desde el punto de fase x (0) = x 0, llegue al origen en tiempo T > T min, es decir x (T) = 0. En la presente tesis revisamos de manera detallada la sección [➜ 4] y [➜ 5] del libro [5] donde se estudia el principio del máximo admisible, en el trabajo hacemos la comparación del control óptimo u opt (t) respecto la rapidez y el control u max (t) que resulta de la aplicación del principio del máximo admisible. Estos dos controles toman valores ±1 y ambos garantizan el traslado de un punto inicial x (0) = x 0 al origen en tiempo finito. El control óptimo u opt (t) realiza el traslado de x (0) = x 0 al origen en un tiempo mínimo posible (T min). El control del máximo admisible u max (t) también realiza el traslado al origen en tiempo T > T min. Se dan ejemplos para n = 2 y n = 3, se comparan los tiempos de conmutación del control óptimo con respecto al control admisible. | |
dc.language | spa | |
dc.publisher | Universidad Michoacana de San Nicolás de Hidalgo | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | info:eu-repo/classification/cti/1 | |
dc.subject | FISMAT-L-2016-0920 | |
dc.subject | Control admisible | |
dc.subject | Control óptimo | |
dc.subject | Función de controlabilidad | |
dc.title | El principio del máximo del control admisible | |
dc.type | info:eu-repo/semantics/bachelorThesis | |