dc.contributor0000-0002-7190-3528
dc.creatorGuzmán Fernández, Maximiliano
dc.creatorZambrano de la Torre, Misael
dc.creatorSifuentes Gallardo, Claudia
dc.creatorCruz Dominguez, Oscar
dc.creatorBautista Capetillo, Carlos
dc.creatorBadillo de Loera, Juan
dc.creatorGonzález Ramírez, Efrén
dc.creatorDurán Muñoz, Héctor
dc.date.accessioned2022-08-29T17:17:10Z
dc.date.accessioned2023-07-19T00:03:29Z
dc.date.available2022-08-29T17:17:10Z
dc.date.available2023-07-19T00:03:29Z
dc.date.created2022-08-29T17:17:10Z
dc.date.issued2022-08-04
dc.identifier978-967-2948-12-4
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/3033
dc.identifierhttp://dx.doi.org/10.48779/ricaxcan-143
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7618353
dc.description.abstractThe monitoring of surface water quality is insufficient in Mexico due to the limited water monitoring stations. The main monitoring parameter to evaluate surface water quality is the biochemical oxygen demand. This parameter estimates the biodegradable organic matter present in the water. Concentrations above 30 mg/l indicates a high level of contamination by domestic and industrial waste. Therefore, the aim of this work to provide a reference to the conventional process of determining biochemical oxygen demand using machine learning. The database used was collected by the National Water Commission (CONAGUA). Pearson’s correlation and Forward Selection techniques were applied to identify the parameters with the most important contribution to prediction of biochemical oxygen demand. Two groups were formed and used as input to four machine learning algorithms. Random forest algorithm obtained the best performance. Group 1 and 2 of parameters obtained a 0.76 and 0.75 coefficient of determination respectively. This allows choosing an adequate group of parameters that can be determined with the chemical analysis instruments available in the study area.
dc.languageeng
dc.publisherUniversiti Teknologi MARA Kedah Branch
dc.relationhttps://36f92a07-7496-48b7-b8c5-d4b3a7a690bd.filesusr.com/ugd/9483e7_fa3419ecd9a748208fc6b7e8d5421225.pdf
dc.relationgeneralPublic
dc.relationhttps://36f92a07-7496-48b7-b8c5-d4b3a7a690bd.filesusr.com/ugd/9483e7_fa3419ecd9a748208fc6b7e8d5421225.pdf
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsCC0 1.0 Universal
dc.sourceInternational Conference on Computing, Mathematics and Statistics (4 al 5 de Agosto), pp. 428-435
dc.titlePrediction of biochemical oxygen demand in mexican surface waters using machine learning
dc.typeinfo:eu-repo/semantics/bookPart


Este ítem pertenece a la siguiente institución