dc.contributorElsevier
dc.creatorStefan C. Mancas
dc.creatorRosu Barbus, Haret-Codratian
dc.date2018-03-21T23:42:37Z
dc.date30-04-2019T23:42:37Z
dc.date2017
dc.date.accessioned2023-07-17T22:05:19Z
dc.date.available2023-07-17T22:05:19Z
dc.identifierHaret C. Rosu, Stefan C. Mancas, Generalized Thomas-Fermi equations as the Lampariello class of Emden-Fowler equations, Physica A: Statistical Mechanics and its Applications, Volume 471, 2017, Pages 212-218.
dc.identifierhttp://hdl.handle.net/11627/3525
dc.identifierhttps://doi.org/10.1016/j.physa.2016.12.007
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7544345
dc.description"A one-parameter family of Emden-Fowler equations defined by Lampariello's parameter p which, upon using Thomas-Fermi boundary conditions, turns into a set of generalized Thomas-Fermi equations comprising the standard Thomas-Fermi equation for p = 1 is studied in this paper. The entire family is shown to be non integrable by reduction to the corresponding Abel equations whose invariants do not satisfy a known integrability condition. We also discuss the equivalent dynamical system of equations for the standard Thomas-Fermi equation and perform its phase-plane analysis. The results of the latter analysis are similar for the whole class. (C) 2016 Elsevier B.V. All rights reserved."
dc.formatapplication/pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso Abierto
dc.rightsembargoedAccess
dc.subjectGeneralized Thomas-Fermi equation
dc.subjectEmden-Fowler equation
dc.subjectAbel equation
dc.subjectInvariant
dc.subjectDynamical systems
dc.subjectF͍SICA
dc.titleGeneralized Thomas-Fermi equations as the Lampariello class of Emden-Fowler equations
dc.typearticle


Este ítem pertenece a la siguiente institución