dc.contributorElsevier
dc.creatorStefan C. Mancas
dc.creatorRosu Barbus, Haret-Codratian
dc.date2018-03-21T23:42:41Z
dc.date2018-03-21T23:42:41Z
dc.date2016
dc.date.accessioned2023-07-17T22:04:45Z
dc.date.available2023-07-17T22:04:45Z
dc.identifierStefan C. Mancas, Haret C. Rosu, Existence of periodic orbits in nonlinear oscillators of Emden-Fowler form, Physics Letters A, Volume 380, Issue 3, 2016, Pages 422-428.
dc.identifierhttp://hdl.handle.net/11627/3539
dc.identifierhttps://doi.org/10.1016/j.physleta.2015.11.009
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7544088
dc.description"The nonlinear pseudo-oscillator recently tackled by Gadella and Lara is mapped to an Emden-Fowler (EF) equation that is written as an autonomous two-dimensional ODE system for which we provide the phase-space analysis and the parametric solution. Through an invariant transformation we find periodic solutions to a certain class of EF equations that pass an integrability condition. We show that this condition is necessary to have periodic solutions and via the ODE analysis we also find the sufficient condition for periodic orbits. EF equations that do not pass integrability conditions can be made integrable via an invariant transformation which also allows us to construct periodic solutions to them. Two other nonlinear equations, a zero-frequency Ermakov equation and a positive power Emden-Fowler equation, are discussed in the same context."
dc.formatapplication/pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso Abierto
dc.subjectNonlinear oscillator
dc.subjectEmden-Fowler equation
dc.subjectAutonomous two-dimensional ODE system
dc.subjectParametric solution
dc.subjectInvariant transformation
dc.subjectPseudo-oscillator
dc.subjectFÍSICA
dc.titleExistence of periodic orbits in nonlinear oscillators of Emden-Fowler form
dc.typearticle


Este ítem pertenece a la siguiente institución