dc.contributorWiley
dc.creatorRosu Barbus, Haret-Codratian
dc.date2018-03-21T23:42:29Z
dc.date2018-03-21T23:42:29Z
dc.date2015
dc.date.accessioned2023-07-17T22:04:40Z
dc.date.available2023-07-17T22:04:40Z
dc.identifierKhmelnytskaya, KV, Kravchenko, VV, and Rosu, HC (2015), Eigenvalue problems, spectral parameter power series, and modern applications. Math. Meth. Appl. Sci., 38, 1945–1969. doi: 10.1002/mma.3213.
dc.identifierhttp://hdl.handle.net/11627/3500
dc.identifierhttp://dx.doi.org/10.1002/mma.3213
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7544057
dc.description"Our review is dedicated to a wide class of spectral and transmission problems arising in di?erent branches of applied physics. One of the main di?culties in studying and solving eigenvalue problems for operators with variable coe?cients consists in obtaining a corresponding dispersion relation or characteristic equa-tion of the problem in a su?ciently explicit form. Solutions of the dispersion relation are the eigenvalues of the problem. When the dispersion relation is known the eigenvalues are found numerically even for relatively simple problems with constant coe?cients because even in those cases as a rule the dispersion relation represents a transcendental equation the exact solutions of which are unknown."
dc.formatapplication/pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso Abierto
dc.subjectSpectral parameter power series
dc.subjectSturm-Liouville problems
dc.subjectDispersion rela-tions
dc.subjectPeriodic potentials
dc.subjectHill´s discriminant
dc.subjectSupersymmetry
dc.subjectZakharov-Shabat sys-tem
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.titleEigenvalue problems, spectral parameter power series, and modern applications
dc.typearticle


Este ítem pertenece a la siguiente institución