dc.contributorAmerican Association of Physics Teachers, American Institute of Physics
dc.creatorGutiérrez Medina, Braulio
dc.date2018-04-03T19:23:24Z
dc.date2018-04-03T19:23:24Z
dc.date2013-02
dc.date.accessioned2023-07-17T22:04:24Z
dc.date.available2023-07-17T22:04:24Z
dc.identifierBraulio Gutiérrez-Medina. American Journal of Physics 81, 104 (2013); https://doi.org/10.1119/1.4765628 © 2013 American Association of Physics Teachers.
dc.identifierhttp://hdl.handle.net/11627/3798
dc.identifierhttps://doi.org/10.1119/1.4765628
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7543943
dc.description"The quantum mechanical transmission probability is calculated for one-dimensional finite lattices with three types of potentials: periodic, quasiperiodic, and random. When the number of lattice sites included in the computation is systematically increased, distinct features in the transmission probability vs. energy diagrams are observed for each case. The periodic lattice gives rise to allowed and forbidden transmission regions that correspond to the energy band structure of the infinitely periodic potential. In contrast, the transmission probability diagrams for both quasiperiodic and random lattices show the absence of well-defined band structures and the appearance of wave localization effects. Using the average transmissivity concept, we show the emergence of exponential (Anderson) and power-law bounded localization for the random and quasiperiodic lattices, respectively."
dc.formatapplication/pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso Abierto
dc.subjectFÍSICA
dc.titleWave transmission through periodic, quasiperiodic, and random one-dimensional finite lattices
dc.typearticle


Este ítem pertenece a la siguiente institución