dc.contributorElsevier
dc.creatorStefan C. Mancas
dc.creatorRosu Barbus, Haret-Codratian
dc.date2018-03-21T23:42:40Z
dc.date2018-03-21T23:42:40Z
dc.date2013
dc.date.accessioned2023-07-17T22:04:19Z
dc.date.available2023-07-17T22:04:19Z
dc.identifierStefan C. Mancas, Haret C. Rosu, Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations, Physics Letters A, Volume 377, Issue 21, 2013, Pages 1434-1438, ISSN 0375-9601, http://dx.doi.org/10.1016/j.physleta.2013.04.024.
dc.identifierhttp://hdl.handle.net/11627/3536
dc.identifierhttps://doi.org/10.1016/j.physleta.2013.04.024
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7543901
dc.description"We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in its first kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers-Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second-order nonlinear equations"
dc.formatapplication/pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso Abierto
dc.subjectAbel equations
dc.subjectIntegrability
dc.subjectDissipative nonlinear equations
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.titleIntegrable dissipative nonlinear second order differential equations via factorizations and Abel equations
dc.typearticle


Este ítem pertenece a la siguiente institución