dc.contributorAmerican Institute of Physics
dc.creatorJosé Orlando Organista
dc.creatorMarek Nowakowski
dc.creatorRosu Barbus, Haret-Codratian
dc.date2018-03-21T23:42:27Z
dc.date2018-03-21T23:42:27Z
dc.date2006
dc.date.accessioned2023-07-17T22:04:12Z
dc.date.available2023-07-17T22:04:12Z
dc.identifierJournal of Mathematical Physics 47, 122104 (2006); doi: 10.1063/1.2397556
dc.identifierhttp://hdl.handle.net/11627/3489
dc.identifierhttp://dx.doi.org/10.1063/1.2397556
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7543866
dc.description"We show in a rigorous way that Crum´s result regarding the equal eigenvalue spectrum of Sturm-Liouville problems can be obtained iteratively by successive Darboux transformations. Furthermore, it can be shown that all neighbouring Darboux-transformed potentials of higher order, uk and uk+1, satisfy the condition of shape invariance provided the original potential u does so. Based on this result, we prove that under the condition of shape invariance, the nth iteration of the original Sturm-Liouville problem defined solely through the shape invariance is equal to the nth Crum transformation."
dc.formatapplication/pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso Abierto
dc.subjectMathematical Physics
dc.subjectHigh Energy Physics - Theory
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.titleShape invariance through Crum transformation
dc.typearticle


Este ítem pertenece a la siguiente institución