dc.contributorElsevier
dc.creatorRosu Barbus, Haret-Codratian
dc.date2018-03-21T23:42:35Z
dc.date2018-03-21T23:42:35Z
dc.date2014
dc.date.accessioned2023-07-17T22:04:09Z
dc.date.available2023-07-17T22:04:09Z
dc.identifierCervantes-López, P.B. Espinoza, A. Gallegos, H.C. Rosu, Ermakov systems with multiplicative noise, Physica A: Statistical Mechanics and its Applications, Volume 401, 2014, Pages 141-147, ISSN 0378-4371, http://dx.doi.org/10.1016/j.physa.2014.01.027.
dc.identifierhttp://hdl.handle.net/11627/3521
dc.identifierhttps://doi.org/10.1016/j.physa.2014.01.027
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7543843
dc.description"Using the Euler-Maruyama numerical method, we present calculations of the Ermakov-Lewis invariant and the dynamic, geometric, and total phases for several cases of stochastic parametric oscillators, including the simplest case of the stochas-tic harmonic oscillator. The results are compared with the corresponding numerical noiseless cases to evaluate the effect of the noise. Besides, the noiseless cases are analytic and their analytic solutions are briefly presented. The Ermakov-Lewis in-variant is not affected by the multiplicative noise in the three particular examples presented in this work, whereas there is a shift effect in the case of the phases."
dc.formatapplication/pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso Abierto
dc.subjectErmakov-Lewis invariant
dc.subjectEuler-Maruyama method
dc.subjectMultiplicative noise
dc.subjectTotal phase
dc.subjectGeometric phase
dc.subjectDynamic phase
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.titleErmakov systems with multiplicative noise
dc.typearticle


Este ítem pertenece a la siguiente institución