dc.contributorSpringer
dc.creatorMelchor Aguilar, Daniel Alejandro
dc.creatorMorales Sánchez, Alejandro
dc.date2018-06-07T20:16:53Z
dc.date2018-06-07T20:16:53Z
dc.date2016
dc.date.accessioned2023-07-17T22:02:56Z
dc.date.available2023-07-17T22:02:56Z
dc.identifierMelchor-Aguilar D., Morales-S�nchez A. (2016) Robust Stability of Integral Delay Systems with Exponential Kernels. In: Witrant E., Fridman E., Sename O., Dugard L. (eds) Recent Results on Time-Delay Systems. Advances in Delays and Dynamics, vol 5. Springer, Berlin
dc.identifierhttp://hdl.handle.net/11627/3875
dc.identifierhttps://doi.org/10.1007/978-3-319-26369-4_16
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7543312
dc.description"In this chapter the stability analysis via Lyapunov-Krasovskii method is extended to perturbed integral delay systems with exponential kernels. Several sufficient robust stability conditions given in the form of linear matrix inequalities are derived."
dc.formatapplication/pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso Abierto
dc.subjectDelay System
dc.subjectNominal Case
dc.subjectLyapunov Functional
dc.subjectExponential Kernel
dc.subjectNeutral Functional Differential Equation
dc.subjectMATEMÁTICAS
dc.titleRobust stability of integral delay systems with exponential kernels
dc.typebookPart


Este ítem pertenece a la siguiente institución