dc.contributorElsevier
dc.creatorRosu Barbus, Haret-Codratian
dc.creatorJosé Murguía
dc.creatorAndrei Ludu
dc.date2018-03-21T23:42:35Z
dc.date2018-03-21T23:42:35Z
dc.date2013
dc.date.accessioned2023-07-17T22:02:44Z
dc.date.available2023-07-17T22:02:44Z
dc.identifierHaret C. Rosu, José S. Murguía, Andrei Ludu, Scaling analyses based on wavelet transforms for the Talbot effect, Physica A: Statistical Mechanics and its Applications, Volume 392, Issue 17, 2013, Pages 3780-3788, ISSN 0378-4371, http://dx.doi.org/10.1016/j.physa.2013.04.015.
dc.identifierhttp://hdl.handle.net/11627/3519
dc.identifierhttps://doi.org/10.1016/j.physa.2013.04.015
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7543220
dc.description"The fractal properties of the transverse Talbot images are analysed with two well-known scaling methods, the wavelet transform modulus maxima (WTMM) and the wavelet transform multifractal detrended fluctuation anal- ysis (WT-MFDFA). We use the widths of the singularity spectra, ? = H ? min, as a characteristic feature of these Talbot images. The scaling exponents of the q moments are linear in q within the two methods, which proves the monofractality of the transverse diffractive paraxial field in the case of these images."
dc.formatapplication/pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso Abierto
dc.subjectScaling exponent
dc.subjectWavelet transform
dc.subjectSelf-imaging e?ect
dc.subjectNear-?eld di?raction
dc.subjectFibonacci convergents
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.titleScaling analyses based on wavelet transforms for the Talbot effect
dc.typearticle


Este ítem pertenece a la siguiente institución