dc.contributorElsevier
dc.creatorIbarra Junquera, Vrani
dc.creatorMonsiváis Alonso, María del Pilar
dc.creatorRosu Barbus, Haret-Codratian
dc.creatorLópez Sandoval, Román
dc.date2018-03-21T23:42:33Z
dc.date2018-03-21T23:42:33Z
dc.date2006
dc.date.accessioned2023-07-17T22:02:38Z
dc.date.available2023-07-17T22:02:38Z
dc.identifierV. Ibarra-Junquera, M.P. Monsivais, H.C. Rosu, R. López-Sandoval, A robust estimation of the exponent function in the Gompertz law, Physica A: Statistical Mechanics and its Applications, Volume 368, Issue 1, 2006, Pages 225-231, ISSN 0378-4371, http://dx.doi.org/10.1016/j.physa.2005.11.048.
dc.identifierhttp://hdl.handle.net/11627/3512
dc.identifierhttps://doi.org/10.1016/j.physa.2005.11.048
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7543163
dc.description"The estimation of the solution of a system of two differential equations introduced by Norton et al. (1976) that is equivalent to the famous Gompertz growth law is performed by means of the recent adaptive scheme of Besancon and collaborators (2004). Results of computer simulations illustrate the robustness of the approach."
dc.formatapplication/pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso Abierto
dc.subjectGompertz law
dc.subjectAdaptive scheme
dc.subjectDffeomorphism
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.titleA robust estimation of the exponent function in the Gompertz law
dc.typearticle


Este ítem pertenece a la siguiente institución